

TECHNOLOGY - VIDEO - STEREO - COMPUTERS - SERVICE

BUILD THE R-E ROBOT

$\frac{\text { CBRHMSBACK }}{\text { PUBLICATION }}$
A personal robot you can customize

COMPUTERS:IN EEEETRONICS

Computers-on the workeench
Computer-aided electronich design
TOUCH明:ONE
CONTROL
PTMF encoding and decodith

DECODER
Get more from your TV

TV DESCRAMBLER

How to build a sinewave decoder
OSCILLATORS
TTL clocks

PLUS:

\star Ask R-E
\star Video News

* Satellite TV
\star New Products
\star Robotics
\star Computabigest

New GPS Series: Tek sets the pace with SmartCursors" and push-button ease.

Work faster, smarter, with two new general purpose scopes from Tektronix. The four-channel, 100 MHz 2246 and 2245 set the new, fast pace for measurements at the bench or in the field. They're easy to use and afford, by design.
On top: the 2246 with exclusive integrated push-button measurements. Measurements are accessed through easy, pop-up menus and implemented at the touch of a button. Measure peak volts, peak-to-peak, \pm peak, dc volts and gated volts with new handsoff convenience and on-screen readout of values.

SmartCursors ${ }^{\text {tw }}$ track voltmeter measurements in the 2246 and visually indicate where ground and trigger levels are located. Or use cursors in the manual mode for immediate, effortless measurement of waveform parameters.
Both scopes build on performance you haven't seen at the bandwidth or prices. Lab grade features include sweep speeds to $2 \mathrm{~ns} /$ div. Vertical sensitivity of $2 \mathrm{mV} /$ div at full bandwidth for low-level signal capture. Plus trigger

Features	$\mathbf{2 2 4 6}$	$\mathbf{2 2 4 5}$
Bandwidth	100 MHz	$\mathbf{1 0 0 \mathrm { MHz }}$
No. of Channels	4	4
Scale Factor Readout	Yes	Yes
SmartCursors	Yes	No
Volts Cursors	Yes	No
Time Cursors	Yes	No
Voltmeter	Yes	No
Vertical Sensitivity	$2 \mathrm{mV} / \mathrm{div}$	$2 \mathrm{mV} / \mathrm{div}$
Max. Sweep Speed	$2 \mathrm{~ns} /$ div	$2 \mathrm{~ns} / \mathrm{div}$
Vert/Hor Accuracy	2%	2%
Trigger Modes	Auto Level, Auto, Norm, TV Field, TV Line, Single Sweep	
Trigger Level Readout	Yes	No
Weight	6.1 kg	6.1 kg
Warranty	3-year on parts and labor including CRT	
Price	$\$ 2400$	$\$ 1875$

sensitivity to 0.25 div at 50 MHz , to 0.5 div at 150 MHz .

Accuracy is excellent: 2% at vertical, 2% at horizontal. And four-channel capability includes two channels optimized for logic signals.

Best of all, high performance comes with unmatched convenience. You can see it and feel it -in the
responsive controls and simple frontpanel design, in extensive on-screen scale factor readouts, and in simplified trigger operation that includes Tek's Auto Level mode for automatic triggering on any signal. Start to finish, the GPS Series saves steps and simplifies tasks.

Get out in front! Call toll-free today to order, to get more details or a videotape demonstration.
1-800-433-2323
In Oregon, call collect 1-627-9000

Featuring four channels, flexible triggering, extensive CRT readouts and push-button ease of use, the new Tek 2246 (left) and 2245 (above) bring high-quality, low-cost analysis to diverse applications in digital design, field service and manufacturing.

SPECIAL SECTION：	45	COMPUTERS ON THE WORKBENCH Learn how computers can be used as powerful oscilloscopes，and more．Robert Grossblatt COMPUTER－AIDED ELECTRONICS DESIGN Computer－aided design software can end the drudgery of electronic－circuit design．And it＇s fun to use，too！Robert Grossblatt	RADIO		
			84	ANTIQUE RADIOS Letters from our readers． Richard D．Fitch	
			COMPUTERS		
			Following page 74	COMPUTER DIGEST V20 vs．8088，interfacing， and more．	
BUILD THIS	54	R－E ROBOT			
		that you can customize for almost any application．Steven E．Sarns	EQUIPMENT REPORTS		
	61	CLOSED－CAPTION DECODER Part 2．This month we get to work and build the unit．J．Daniel Gifford	24	Beckman Circuitmate LP25 Logic Probe	
	73	PC SERVICE Circuit boards for the closed－caption decoder	28	Beckman Circuitmate PR41 Logic Pulser	
			DEPARTMENTS		
TECHNOLOGY	6	VIDEO NEWS Inside the fast－changing video scene． David Lachenbruch	112112	Advertising and Sales Offices Advertising Index	
	79	SATELLITE TV Breaking Videocypher．Bob Cooper，Jr．	20	Ask R－E	
			1138	Free Information Card	
	81	ROBOTICS More on vision systems．Mark J．Robillard		Letters	
CIRCUITS AND COMPONENTS	57	TV DESCRAMBLING Part 6．Build a working sinewave descrambler． Rudolf Graf and William Sheets	38 New Products 4 What＇s News		
	65	DTMF ENCODING AND DECODING New IC＇s make the power of DTMF signalling available to all． Dale Nassar	Annual Index January Thru December 1986 Begins on page 75		
	71	HOW TO DESIGN OSCILLATOR CIRCUITS Part 6．Building clock circuits using TTL IC＇s． Joseph J．Carr		$\begin{aligned} & \text { SEASON'S } \\ & \text { GREETINGS } \end{aligned}$	
	86	DRAWING BOARD A remote－control s		The editors and staff	
		A remote－control Robert Grossblatt		of Radio－Electronics	
	88	SERVICE CLINIC Signal tracing．Jack Darr		join in sending fioliday greetings and	
	89	SERVICE QUESTIONS Solutions to servicing problems．		our best wisfies for a fappy new year	

Cover

 This month we begin a continuing series detailing a versatile, powerful robot you can design and build yourself. The R-E Robot has several characteristics that set it

 apart from commercially available units or kits. For one, it can be customized to meet the demands of almost any user application. Further, it is backed by a powerful onboard computer that makes use of a custom robot control language. That language makes it possible to control the robot using simple commands. To help get the most out of the project, we have set up a special section of our computer bulletin-board (RE-BBS) for the rapid exchange of sources, applications, software, and updates among our readers, the author, and the editors. To learn more, turn to page 54.
Next Month

THE JANUARY ISSUE IS ON SALE DECEMBER 2

BUILD THE R-E ROBOT

Part 2. A closer look at the Robotic Personal Computer.

HOW TO APPLY FOR A PATENT

Learn how to patent your next brainstorm.

BUILD A NINE-STATION INTERCOM

A sophisticated, versatile communications system for the home or office.

TV SIGNAL SCRAMBLING

Part 7 looks at descramblers for the gated-pulse and outband systems.

AUDIO UPDATE

Larry Klein joins our staff as Audio Editor with the first installment of his new column.

[^0]
= ertronios

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief, emeritus

Larry Steckler, EHF, CET, editor-in-chief and publisher

EDITORIAL DEPARTMENT
Art Kleiman, editorial director Brian C. Fenton, managing editor Carl Laron, WB2SLR, associate editor Jeffrey K. Holtzman, assistant technical editor
Robert A. Young, assistant editor
Julian S. Martin, editorial associate
Byron G. Wels, editorial associate
M. Harvey Gernsback,
contributing editor
Jack Darr, CET, service editor
Robert F. Scott, semiconductor editor
Herb Friedman,
communications editor
Bob Cooper, Jr. satellite-TV editor
Robert Grossblatt, circuits editor
David Lachenbruch, contributing editor
Richard D. Fitch,
contributing editor
Mark J. Robillard, robotics editor Teri Scaduto Wilson, editorial assistant

PRODUCTION DEPARTMENT
Ruby M. Yee, production director Robert A. W. Lowndes, editorial production
Andre Duzant, technical illustrator
Karen Tucker, advertising production
Geoffrey S. Weil, production traffic

CIRCULATION DEPARTMENT

Jacqueline P. Cheeseboro,
circulation director
Wendy Alanko,
circulation analyst
Theresa Lombardo, circulation assistant

Cover photo by Dan Muro
Typography by Mates Graphics
Radio-Electronics, Gernsback Publications, Inc., $\mathbf{5 0 0 - B}$ Bi-County Blvd., Farmingdale, NY 11735.
516-293-3000
Radio-Electronics is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.
Microfilm \& Microfiche editions are available. Contact circulation department for details.

Advertising Sales Offices listed on page 112.

IIPI

NEW！Lower Price Scanners

Communications Electronics＂， the world＇s largest distributor of radio scanners，introduces new lower prices to celebrate our 15th anniversary．

Regency ${ }^{9}$ MX7000－GR
 List price $\$ 699.95 /$ CE price $\$ 469.95$

10－Band， 20 Channel－Crystalless • AC／DC Frequency range： $25-550 \mathrm{MHz}$ ．continuous coverage and 800 MHz ．to 1.3 GHz continuous coverage． The Regency MX7000 scanner lets you monitor Military，Space Satellites，Government，Railroad， Justice Department，State Department，Fish \＆
Game，Immigration，Marine，Police and Fire Depart－ ments，Broadcast Studio Transmitter Links，Aero－ nautical AM band，Aero Navigation，Paramedics， Amateur Radio，plus thousands of other radio frequencies most scanners can＇t pick up．The Regency MX7000 is the perfect scanner to receive the exciting 1.2 GHz ，amateur radio band．

Regency ${ }^{\circ}$ Z60－GR

List price \＄299．95／CE price \＄179．95／SPECIAL 8－Band， 60 Channel © No－crystal scanner Bands：30－50，88－108，118－136，144－174，440－512 MHz． The Regency Z60 covers all the public service bands plus aircraft and FM music for a total of eight bands．The Z60 also features an alarm clock and priority control as well as AC／DC operation．Order today．

Regency ${ }^{\text {® }}$ Z45－GR

List price \＄259．95／CE price \＄159．95／SPECIAL 7－Band， 45 Channel 0 No－crystal scanner Bands： $30-50,118-136,144-174,440-512 \mathrm{MHz}$ ． The Regency Z45 is very similar to the Z60 model listed above however it does not have the commer－ cial FM broadcast band．The Z45，now at a special price from Communications Electronics．

Regency ${ }^{\circledR}$ RH250B－GR

List price $\$ 659.00 / \mathrm{CE}$ price $\$ 329.95 /$ SPECIAL 10 Channel • 25 Watt Transceiver • Priority The Regency RH250B is a ten－channel VHF land quency between 150 to 162 MHz ．Since this radio is synthesized，no expensive crystals are needed to store up to ten frequencies without battery backup．All radios come with CTCSS tone and scanning capabilities．A monitor and night／day switch is also standard．This trans－ ceiver even has a priority function．The RH250 makes an ideal radio for any police or fire department volunteer because of its low cost and high performance．A 60 Watt VHF 150－162 MHz ．version called the RH600B is available for $\$ 454.95$ ．A UHF 15 watt version of this radio called the RU150B is also available and covers $450-482 \mathrm{MHz}$ ．but the cost is $\$ 449.95$ ．

NEW！Bearcat ${ }^{\oplus}$ 50XL－GR

List price $\$ 199.95 / C E$ price $\$ 114.95 /$ SPECIAL
10－Band， 10 Channel o Handheld scanner Bands：29．7－54， $136-174,406-512 \mathrm{MHz}$ ．
The Uniden Bearcat 50XL is an economical， hand－held scanner with 10 channels covering ten frequency bands．It features a keyboard lock switch to prevent accidental entry and more． Also order part \＃BP50 which is a rechargeable battery pack for $\$ 14.95$ ，a plug－in wall charger， part \＃AD100 for \＄14．95，a carrying case part\＃ VC001 for \＄14．95 and also order optional cigarette lighter cable part \＃PSOO1 for\＄14．95．

NEW！Scanner Frequency Listings The new Fox scanner frequency directories will help you find all the action your scanner can listen to．These new listings include police，fire，ambulances \＆rescue squads，local government，private police agencies， hospitals，emergency medical channels，news media， forestry radio service，railroads，weather stations，radio common carriers，AT\＆T mobile telephone，utility con panies，general mobile radio service，marine radio
service，taxi cab companies，tow truck companies， service，taxi cab companies，tow truck companies， trucking companies，business repeaters，business radio （simplex）federal government，funeral directors，vet－ erinarians，buses，aircraft，space satellites，amateur radio，broadcasters and more．Fox frequency listings feature call letter cross reference as well as alphabetical
listing by licensee name，police codes and signals．All listing by licensee name，police codes and signals．All
Fox directories are $\$ 14.95$ each plus $\$ 3.00$ shipping Fox directories are $\$ 14.95$ each plus $\$ 3.00$ shipping．
State of Alaska－RLO19－1；State of Arizona－RLO25－1： State of Alaska－RLO19－1；State of Arizona－RLO25－1；
Baltimore，MD／Washington，DC－RLO24－1；Buffalo，NY／ Baltimore，MD／Washington，DC－RLO24－1；Buffalo，NY／
Erie，PA－RLOO9－2；Chicago，IL－RL014－1；Cincinnati／ Erie，PA－RLOO9－2；Chicago，IL－RLO14－1；Cincinnati／ Dayton，OH－RLOO6－2；Cleveland，OH－RLO17－1；Colum bus，OH－RLOO3－2；Dallas／Ft．Worth，TX－RLO13－1， Denver／Colorado Springs，CO－RLO27－1；Detroit，M1／ Windsor，ON－RLOO8－3；Fort Wayne，IN／Lima，OH RLO23－1；Indianapolis，IN－RLO22－1；Kansas City，MO／ KS－RLO11－2；Long Island，NY－RLO26－1；Los Angeles， CA－RLO16－1；Louisville／Lexington，KY－RLOO7－1；Mil waukee，WI／Waukegan，IL－RLE21－1；Minneapolis／St． Pauki，MN－RLO10－2；Nevada／E．Central CA－RLO28－1 Oklahoma City／Lawton，OK－RLOO5－2；Orlando／Daytona Beach，FL－RLL12－1；Pittsburgh，PAWheeling，WV－ Beach，FL－RLO12－1；Pittsburgh，PA／Wheeling，W
RL029－1；Rochester／Syracuse，NY－RLO20－1；San
Diego，CA－RLO18－1；Tampa／St，Petersburg FL－ Diego，CA－RLO18－1；Tampa／St．Petersburg，FL－ RLOO4－2；Toledo，OH－RLOO2－3．New editions are being added monthly．For an area not shown above call Fox at 800－543－7892．In Ohio call 800－621－2513．
NEW！Regency ${ }^{\circ}$ HX1500－GR List price $\$ 369.95 /$ CE price $\$ 239.95$
11－Band， 55 Channel \cdot Handheld／Portable Search © Lockout © Priority © Bank Select Sidelit liquid crystal display • EAROM Memory Direct Channel Access Feature e Scan delay Bands：29－54，118－136，144－174，406－420， $440-512 \mathrm{MHz}$ The new handheld Regency HX1500 scanner is fully keyboard programmable for the ultimate in versatility．You can scan up to 55 channels at the versatility．You can scan up to 55 channels at the
same time including the AM aircraft band．The LCD display is even sidelit for night use．Includes belt clip，flexible antenna and earphone．Operates on 8 1．2 Volt rechargeable Ni －cad batteries（not included）． Be sure to order batteries and battery charger from accessory list in this ad．

Bearcat ${ }^{\text {® }}$ 100XL－GR

List price $\$ 349.95 /$ CE price $\$ 203.95 /$ SPECIAL

 9－Band， 16 Channel o Priority o Scan Delay Search－Limit © Hold e Lockout © AC／DC Frequency range： $30-50,118-174,406-512 \mathrm{MHz}$ ．The world＇s first no－crystal handheld scanner now has a LCD channel display with backlight for low light use and aircraft band coverage at the same low price．Size is $13 /^{\prime \prime} \times 71 / 2^{\prime \prime} \times 27 / s^{\prime \prime}$ ．The Bearcat 100 XL has wide frequency coverage that includes all public service bands（Low， High，UHF and＂T＂bands），the AM aircraft band，the 2 － meter and 70 cm ．amateur bands，plus military and
federal government frequencies．Wow．．．what a scanner！
Included in our low CE price is a sturdy carrying case， earphone，battery charger／AC adapter，six AA ni－cad batteries and flexible antenna．Order your scanner now．

Bearcat ${ }^{\ominus}$ 210XW－GR

List price \＄339．95／CE price \＄209．95／SPECIAL 8－Band， 20 Channel © No－crystal scanner Automatic Weather－Search／Scan © AC／DC Frequency range： $30-50,136-174,406-512 \mathrm{MHz}$ ． The new Bearcat 210XW is an advanced third generation scanner with great performance at a low CE price．

NEW！Bearcat ${ }^{\circ}$ 145XL－GR

List price \＄179．95／CE price \＄102．95／SPECIAL 10 Band， 16 channel © AC／DC O Instant Weather Frequency range：29－54，136－174， $420-512 \mathrm{MHz}$ ． The Bearcat 145XL makes a great first scanner．Its low cost and high performance letsyou hearall the action with the touch of a key．Order your scanner from CE today．

TEST ANY SCANNER

Test any scanner purchased from Communications Electronics for 31 days before you decide to keep it．If for original condition with all parts in 31 days，for a prompt refund（less shipping／handling charges and rebate credits）．

NEW！Bearcat ${ }^{\oplus}$ 800XLT－GR

List price $\$ 499.95 /$ CE price $\$ 317.95$

12－Band， 40 Channel－No－crystal scanner

 Priority control－Search／Scan e AC／DC Bands：29－54，118－174，406－512，806－912 MHz The Uniden 800 XLT receives 40 channels in two banks Scans 15 channels per second．Size $91 / 4^{\prime \prime} \times 41 / 2^{\prime \prime} \times 12^{1 / 2}$ ．$^{\prime \prime}$
OTHER RADIOS AND ACCESSORIES

Panasonic RF－2600－GR Shortwave receiver．．．．．$\$ 179.95$
RD95－GR Uniden Remote mount Radar Detector．．．$\$ 128.95$ RD55－GR Uniden Visor mount Radar Detector．．．．．$\$ 98.95$ RD9－GR Uniden＂Passport＂size Radar Detector ．．．\＄199．95 BC－WA－GR Bearcat Weather Alert＊．．．．．．．．．．．．．．．．．．．$\$ 49.95$

DX1000－GR Bearcat shortwave receiver SALE PC22－GR Uniden remote mount CB transceiver PC55－GR Uniden mobile mount CB transceiver R1060－GR Regency 10 channel scanner SALE． MX3000－GR Regency 30 channel scanner XL156－GR Regency 10 channel scanner $\$ 349.95$ UC102－GR Regency VHF 2 ch． 1 Watt transceiv $\$ 99.95$ | $\$ 139.95$ |
| :--- | P1405－GR Regency 5 amp regulated power supply．$\$ 6.95$ P1412－GR Regency 12 amp reg．power supply．．．$\$ 164.95$ MA256－GR Drop－in charger for HX1200 \＆HX1500 ．．$\$ 84.95$ MA518－GR Wall charger for HX1500 scanner ．．．．．\＄14．95 MA516－GR Carrying case for HX1500 scanner，．．．\＄14．95 MA257－GR Cigarette lighter cord for HX12／1500 ．．．$\$ 19.95$ MA917－GR Ni－Cad battery pack for HX1200 SMMX7000－GR Sva man for MX7000 2 MX5000 SMMX7000－GR SMMX3000－GR Service man．for Regency MX3000

B－4－GR 1．2 V AAA Ni－Cad batteries（set of four）．．． B－8－GR 1．2 V AA Ni－Cad batteries（set of eight） FB－E－GR Frequency Directory for Eastern U．S．A． FB－W－GR Frequency Directory for Western U．S．A ASD－GR Air Scan Directory
SRF－GR Survival Radio Frequency Directory TSG－GR＂Top Secret＂Registry of U．S．Govt．Freq． TIC－GR Techniques for Intercepting Comm． RRF－GR Railroad frequency directory．
CIE－GR Covert Intelligenct，Elect．Eavesdropping A60－GR Magnet mount mobile scanner antenna． A70－GR Base station scanner antenna USAMM－GR Mag mount VHF／UHF ant．w／12＇cable USAK－GR ${ }^{3 / 4} 4^{\prime \prime}$ hole mount VHF／UHF ant．w／ 17^{\prime} cable USAK－GR $3 /{ }^{\prime \prime}$ hole mount VHF／UHF ant．w／ 17^{\prime} cable ．．．$\$ 35.95$
USATLM－GR Trunk lip mount VHF／UHF antenna．．．．$\$ 35.95$ $\$ 19.95$

$\$ 34.95$ | .$\$ 19.95$ |
| :--- | $\$ 19.95$

.$\$ 19.95$ $\$ 19.95$
.$\$ 9.95$..$\$ 9.95$
.$\$ 17.95$ $\$ 17.95$
$\$ 14.95$ ．$\$ 14.95$ $\$ 14.95$
$\$ 1$.$\$ 14.95$
.$\$ 14.95$ \＄14．95 $\$ 14.95$
$\$ 14.95$ ．$\$ 14.95$.$\$ 14.95$. .$\$ 35.95$ ．$\$ 35.95$ ．$\$ 35.95$
$\$ 39.95$ Add $\$ 3.00$ shipping for all accessories ordered at the same time， Add $\$ 12.00$ shipping per shortwave receiver．
Add $\$ 7.00$ shipping per scanner and $\$ 3.00$ per antenna．
BUY WITH CONFIDENCE
To get the fastest delivery from CE of any scanner， send or phone your order directly to our Scanner Distribution Center．＂Michigan residents please add 4\％ sales tax or supply your tax I．D．number．Written pur－ chase orders are accepted from approved government agencies and most well rated firms at a 10\％surcharge for net 10 billing．All sales are subject to availability， acceptance and verification．All sales on accessories are final．Prices，terms and specifications are subject to change without notice．All prices are in U．S．dollars．Out of stock items will be placed on backorder automatically unless CE is instructed differently．A \＄5．00 additiona handling fee will be charged for all orders with a merchandise total under $\$ 50.00$ ．Shipments are F．O．B． Ann Arbor，Michigan．No COD＇s．Most products that we sell have a manufacturer＇s warranty．Free copies of warranties on these products are available prior to purchase by writing to CE．Non－certified checks require bank clearance．Not responsible for typographical errors．

Mail orders to：Communications Electron－ ics，Box 1045，Ann Arbor，Michigan 48106 U．S．A．Add \＄7．00 per scanner for R．P．S．／U．P．S． ground shipping and handling in the continental U．S．A．For Canada，Puerto Rico，Hawaii，Alaska， or APO／FPO delivery，shipping charges are three times continental U．S．rates．If you have a Discover，Visa or Master Card，you may call and place a credit card order．Order toll－free in the U．S．Dial 800－USA－SCAN．In Canada，order toll free by calling 800－221－3475．WUI Telex any－ time，dial 671－0155．If you are outside the U．S or in Michigan dial 313－973－8888．Order today． Scanner Distribution Center＂and CE logos are trade－ marks of Communications Electronics Inc．
\ddagger Bearcat is a registered trademark of Uniden Corporation \dagger Regency is a registered trademark of Regency Electronics Inc．AD \＃070286－GR Co．
Copyright © 1986 Communications Electronics Inc．
For credit card orders call 1－800－USA－SCAN

COMMUNICATIONS ELECTRONICS INC．

Consumer Products Division
P．O．Box 1045 －Ann Arbor，Michigan 48106－1045 U．S．A． Call800－USA－SCAN or outside U．S．A．313－973－8888 CIRCLE 79 ON FREE INFORMATION CARD

What'S NEWS

Closed-circuit "citizens band"
Subscribers to the CompuServe Information Service, based in Columbus, OH , have available a "closed-circuit" form of CB radio called the CB Simulator. Any of the 280,000 CompuServe subscribers can-by typing GO CB-switch to a CB menu that makes it possible to scan a complete listing of all persons speaking on all 36 channels of the band, and to join conversations on any of the bands. Private conversations may be held off-channel, as well.

The connect rate for the CB Simulator is $\$ 6.00$ per hour from 6 P.M. to 8 A.M. weekdays, and all day Saturdays, Sundays, and holidays. For weekday service between 8 A.M. and 6 P.M. the rate is $\$ 12.50$ per hour.
Numerous friendships have been made over the simulator, and at least two weddings have been reported.

Fast computer chips with
 "quasicrystals?"

Scientists from three departments of the University of Michigan, supported by a $\$ 1.5$-million grant from the National Science Foundation, are working to produce extremely fast computer chips and other advanced microelectronic devices. They are working with a variety of metallic and semiconductor materials, sandwiched to form multilayered chips called superlattices.

In the past, researchers have depended on making semiconductor devices smaller and circuit leads shorter to make faster computers and other electronics devices. Already chips have been made that crowd more than a million electronics devices on a silicon chip less than a centimeter on a side.

Having reached the limit in reducing size, scientists are now
seeking new ways of speeding up computers and other electronics equipment. Under the new grant, U of M scientists will focus on building and testing the properties of superlattices made of synthetic "quasicrystals," new materials invented at the University. The atoms of faster quasicrystals have a predictable arrangement that falls between the repeating patterns of crystals and the total disarray of glasses.

The research will also examine properties of metallic superlattices, with potential applications in modern superconducting devices. Research will also involve building and testing heterostructures, materials similar to superlattices but with fewer layers, that can be manipulated to produce a variety of electrical and optical effects.

New transparent conductor uses organic materials

The first transparent polymeric conductor is under development by Honeywell. Made in a thin film, it is versatile enough to defrost a car window or control a building's temperature by reflecting heat and cold. It is made from the polymer polydiiodocarbazole (PDICZ) doped with bromine and formed into film from 1 to 30 microns thick.

By varying the thickness of the film and the level of doping, Honeywell has varied the conductivity from insulating levels to conductivity appropriate for such applications as defrosting car windows. Light transmission is from 60 to 90 per cent.

The new film can be made more readily and more easily than earlier inorganic types, and it can be made with greater surface areas and thicknesses. Therefore it is expected to be considerably lower in cost than present types.

New devices authenticate money transfer messages

Researchers at the National Bureau of Standards Institute for Computer Sciences and Technology have completed the first validation of a security device that will be used to authenticate messages used for the electronic transfer of funds.

This validation is part of a program to help protect the billions of dollars in Federal funds that are transferred electronically every year.

NBS developed the test methods to ensure that devices used to transfer funds electronically comply with federal standards for computer data authentication and with the American National Standard for Financial Institution Message Authentication. The validation system can be used to test equipment remotely through an electronic interconnection with NBS.

Further information can be obtained from Miles Smid, Institute for Computer Sciences and Technology, National Bureau of Standards, A216 Technology BIdg., Gaithersburg, MD 20899.

High-efficiency solar panels

Solar panels designed to operate four or five times more efficienty than the best photvoltaic cells currently available, and at only a fraction of the cost, are currently under development by Massachusetts inventor Alvin Marks, and by Westinghouse.

Lepcon, the preliminary design patented by Marks, consists of a glass panel covered by millions of aluminum or copper strips, each less than a micron wide. Energy in the sunlight striking the panel is transferred to the electrons in the metal strips, generating electricity. Lumeloid, also patented by Marks, uses a similar approach, but substitutes film-like sheets of plastic.

BK PRECISION
FLபKR

1RAR G Efectionics, INe
 New and Used Electronic Test Equipment
 Sales - Service - Rental - Leasing

HAMEE Oscilloscopes with Component Tester warranty

HM 203-6 DC to 20MHz
$\$ 489.00$

- Rectangular screen, internal graticule $8 \times 10 \mathrm{~cm}$.
- Deflection: $5 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$
- Timebase: $0.5 u \mathrm{~s} / \mathrm{cm}$ to $0.2 \mathrm{~s} / \mathrm{cm}$
X-Magnification $\times 10$
- Component Tester

Test voltage: max. 8.5 Vrms (open circuit)
Test current: max. 24mA rms (shorted)

HM 204-2 DC to $20 \mathrm{MHz} \$ 629.00$

- Component Tester
- Deflection: $5 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ Y-Magnification $\times 5$
- Timebase: $0.1 \mathrm{us} / \mathrm{cm}$ to $0.5 \mathrm{~s} / \mathrm{cm}$ X-Magnification $\times 10$
- Sweep delay: 100 ns to 0.1 s .
- Calibrator: square-wave generator, $\approx 1 \mathrm{kHz} / 1 \mathrm{MHz}$ switchable, risetime $<5 \mathrm{~ns}$, for probe compensation, output voltages: 0.2 V and $2 \mathrm{~V} \pm 1 \%$.

HM 605 DC to 60 MHz
$\$ 899.00$

- Component Tester
- Deflection: $5 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ Y-Magnification $\times 5$
- Y-Output from Ch.I or Ch.II: $\approx 45 \mathrm{mV} / \mathrm{cm}$ into 50Ω.
- Timebase: $50 \mathrm{~ns} / \mathrm{cm}$ to $1 \mathrm{~s} / \mathrm{cm}$ X-Magnification $\times 10$
- Sweep delay: 100 ns to 0.1 s .

HM 205
$\$ 799.00$
Real-time - See 203-6 Specifications

Digital Storage

- Operating modes: Refresh and Single with Reset (incl. LED indication for Ready), Hold Ch.I, Hold Ch.II. 1024×8 bit for each chan. Sample rate: max. 100 kHz . Resolution: vertical $28 \mathrm{pts} / \mathrm{cm}$, horiz. 100 pts/cm.
- Option: Interface for plotter.
- Component Tester

Digital Storage

HM 208
HM 208-I
$\$ 2,380.00$
$\$ 2,860.00$
(with IEEE Interface)
Real-time - See 203-6 Specifications

- Operating modes: XY, Roll, Refresh, Single (LED ind.), Hold Ch.I, Hold Ch.II, Plot I and Plot II with read-out check on screen, backing storage, Dot Joining button. $2 \times 1024 \times 8$ bit for each ch. Sample rate: max. 20 MHz . Resolution: vert. 28 pts/cm, horiz. 200 or $100 \mathrm{pts} / \mathrm{cm}$.
- Plotter output: vertical $0.1 \mathrm{~V} / \mathrm{cm}$, horizontal $0.1 \mathrm{~V} / \mathrm{cm}$. Output imped.: 100Ω each. Penlift: TTL/CMOS compat. Output speed rate: $5-10-20 / 10-20-40 \mathrm{~s} / \mathrm{cm}$.
- Option: Lithium battery for memory backup.

ATTACHES TO ALL HAMEG SCOPES ON THIS PAGE!
HM $8001 \quad 2$ BAY Mainframe $\$ 228.00$
HM 80024 BAY Mainframe call SOON
HM 8011-2 Digital Multimeter $41 / 2$ digits 298.00
HM 8014 Milli Ohm Meter 298.00
HM 8021-2 Counter, $0.1 \mathrm{~Hz}-1 \mathrm{GHz} \quad 324.00$
HM 8027 Distortion Meter 248.00
HM 8030-2 Function Gen. $0.1 \mathrm{~Hz}-1 \mathrm{MHz} \quad 288.00$
HM 8032 Sine Wave Gen. $20 \mathrm{~Hz}-20 \mathrm{MHz} \quad 288.00$
HM 8035
HM 8037
HM 8040
HM 8045

Pulse Generator, $2 \mathrm{~Hz}-20 \mathrm{MHz}$
Low Dist. Sine Gen. $5 \mathrm{~Hz}-50 \mathrm{kHz}$
Triple Power Supply
Oscilloscope Calibrator
455.00
248.00
278.00
378.00

```
CIRCLE 126 ON FREE INFORMATION CARD
            CALL US TOLL FREE
    1-800-732-3457
    IN CALIFORNIA TOLL FREE
    1-800-272-4225
```

- Master Charge	ADD FOR SHIPPING AND INSURANCE
- VISA - COD	\$0 to \$250.00 $\$ 4.50$
- Money Order	\$251.00 to 500.00 $\$ 6.50$
- Check	\$501.00 to \$750.00 $\$ 8.50$
	\$751.00 to \$1000............... \$12.50
	over $\$ 1000.00$.......... $\$ 15.00 / 1000$

Prices subject to change without notice.
RAG ELECTRONICS, INC. / 21418 Parthenia Street / Canoga Park, CA91304 / 1-818-998-6500

EPolaroid

Simbenom
EPoiaroid

VIDEO News

- Picture-in-Picture. Digital circuitry is making possible a number of hot new features in VCR's, the most spectacular of which is Picture-In-Picture, or PIP. That feature heretofore has been found only in a few digital TV sets. Now PIP VCR's are being introduced one after the otherthe first three by RCA, Hitachi, and Sears, with others to come later. All three of the first PIP VCR's are made by Hitachi. RCA's is the most sophisticated and contains nine dynamic RAM's with a total storage capacity of more than two megabits.

Using the hand-held remote-control unit, the user can superimpose a smaller picture in any corner of the main picture. The main picture may be the VCR tape playback, and the smaller picture can be from the VCR's TV tuner or from the video input terminal. The two pictures may be exchanged at will, and either one may be frozen, thanks to built-in field storage. The same field storage is used for fact motion without sound bars; there are unique special effects, such as "mosaic" and "posterization." The Hitachi and Sears recorders also have PIP but their special effects are limited. The RCA VCR uses two DRAM's for the PIP field memory, and six to enhance picture stability. The first PIP VCR's will sell for $\$ 500$ to $\$ 700$, depending on what other features are included.

- Interactive VCR. Worlds of Wonder, Inc., which brought us Teddy Ruxpin, the talking teddy bear, plans to introduce a unique computer attachment that will make any VCR interactive. Three years in development, it differs from programmable videodiscs in that the screen is never blanked during the interactive search. Special tapes for the system have four-way branching and give the effect of 20 tracks of information. There are four audio tracks, up to four branchable video tracks with motion, and up to 20 computer-generated tracks with limited motion. The entire attachment is scheduled to sell for less than $\$ 250$ in a year or so, or could be built into a digital TV or VCR for $\$ 50$ to $\$ 100$. The first program cassettes will be educational, and several producers - the first being Heron

Communications-are preparing programming. In addition, WOW is exploring the use of special cable-TV programming for the interactive machine. That is possible because the system is completely linear. The tape is never required to stop or reverse itself. The system can give quizzes with questions selected at random, keep score, provide music with a still picture, change pictures in response to the viewer's choice, react to user-manipulated arrows or cursors, and so forth.

- The ultimate Beta. The most elaborate, and probably the best, consumer VCR ever introduced is a new Beta model by Sony. The quality results from the fact that Sony didn't worry much about compatibility. It improved on Superbeta by shifting the carrier up to 1.2 MHz in the Beta I speed, as opposed to Superbeta's 800 kHz , thereby providing resolution of better than 300 lines. A switch preserves one-way compatibility playback of standard Beta I tapes. The machine has features never seen before on a half-inch machine, such as flying erase heads, a frame counter, a character generator with eight-page memory, and a programmable assemble editing system to put together up to eight segments with accuracy within two frames. It even has an onscreen calendar for programming. Sony sees its principle use in editing onto VHS, Beta or 8 mm VCR formats. It lists at $\$ 1,700$.
- Zenith adds Bose sound. Whe says you need a ten-foot audio system to get good TV sound? Not Zenith or Bose. The two companies have united to produce a series of high-end 27 inch digital color sets with a folded waveguide woofer built into the back and occupying no space beyond the normal outside dimensions of the set. Two twiddlers -combination midband and tweeter speakers-are front-mounted below the TV screen. The sets have three amplifiers-a 25watter to power the woofer and two 5 -watt units for the twiddlers - and they have built-in World System Teletext reception. They'll sell for around $\$ 1,400$ for a table model, or $\$ 1,700$ for the best console.

What Pomona knows about banana plugs and adapters would fill a book.

For over 30 years the Pomona Electronics line of banana plugs, jacks and adapters has played a major role in our ability to stay on the leading edge of electronics test technology.

Every year we add new banana plug products to make your life as a professional design engineer a little easier. And the complete line is listed in our 1986 General Catalog.

In our new book you'll find over 400 models that utilize or adapt banana plugs in some useful fashion: plugs, jacks, binding posts, adapters, patch cords and cables, in standard or miniature sizes. You name it and you'll probably find exactly what you need in our new catalog.

Here's how to get your copy of our 1986 General Catalog: Just circle the reader service number below; call us at (714) 623-3463; write us at Pomona Electronics, a division of ITT Corporation, 1500 East Ninth Street, P.O. Box 2767, Pomona, California 91769.

Our products are available

LETTERS

 }

LETTERS
RADIO-ELECTRONICS
500-B BI-COUNTY BOULEVARD
FARMINGDALE, N Y $1 / 735$

OOOOPS!

A few errors crept into the the article "Build This Satellite-TV Descrambler" in the October 1986 issue of Radio-Electronics. In Fig. 2, the schematic diagram, pin 14 of IC's 2 and 3 should be tied to -5 volts, not +5 volts as shown. Resistor R29 should be tied to +5 volts. Transistor Q7 is misidentified: It should be a 2 N 3904 . Finally, the positions of Q5 and Q6 have been reversed. The unit identified as Q5 should be Q6, a 2N3904 NPN transistor; the transistor identified as Q6 should be Q5, a 2N3906 PNP transistor.

In Fig. 3, the parts-placement diagram, two components are shown in the wrong location. Resistors R8 and R23 are shown vertically aligned; they should be mounted horizontally. Resistor R8 mounts between the top of what is shown as R8 and the top of what is shown as R23; resistor R23 mounts between the bottom of what is shown as R8 and the bottom of what is shown as R23.

Finally, a trace is missing from the PC pattern. It runs from the positive end of C5 to the center of jack J2. Replace that trace with a jumper.-Editor.

RADAR SPEED-GUN CALIBRATOR

In regard to Anthony Stevens' article, "Radar Speed-Gun Calbrator" (Radio-Electronics, August 1986), there seems to be a little information that he left out-and the reader should be aware of it.

On the first page of the article, he mentions that the Doppler shift is about 31 Hz per MPH of target velocity. That is correct, but he fails to point out that that amount of Doppler shift only applies to radar guns operating at the 10.525 GHz frequency (X-band). He also does not inform the reader that the Gunn diode and microwave horn

Small Outines. No Problem.

With A P Products ${ }^{\text {TM }}$ brand SOIC Test Clips.

- Allows safe, convenient, fast and easy testing of normally hard-to-access Small Outine Integrated Circuits (SOICs).
- Eight sizes available for $.30^{\prime \prime}$ and $.15^{\prime \prime}$ package sizes.
- Helical compression springs and insulating contact combsensure contact integrity during testing.
- Permits devices stacked as close as 025^{*} end-to-end to be tested simultaneously.
Standard $.025^{\prime \prime}$ square contacts on $.10^{\circ}$ centers at the probe end of the clip easily accept test probes or single row female socket connectors.
Steel hinge pin and acetal thermoplastic body provide long service life.
Available with alloy 764 unplated and gold plated leads.
For immediate response contact a local authorized AP Products Prototype \& Test Devices distributor. Or telephone 800-321-9668 or (216) 354-2101 in Ohio for further information.

We Solve Problems.

Hitachi SCOPES

Full 3-year warranty

V1050F 100 MHz QUAD CHANNEL/8-TRACE DELAYED SWEEP SCOPE. The features you want and need :500uV Sens. : 2\% Accuracy " 6" CRT has internal graticule. 20KV acceleration. One-touch sync of TV-V, TV-H. Plus autofocus: variable hold-off; trace rotation adjust; X-Y operation: 10X magnification. W/probes, dust cover.
Reg. \$1,595
Sale Price ${ }^{\$ 1,198}$
V650F 60 MHz TRIPLE-TRACE DELAYED SWEEP SCOPE. As above, except has 10 KV acceleration, 1 MV sensitivity, 3% accuracy, triple trace. W/probes.
Reg. $\$ 1,195$
Sale Price\$898
FLUK目。DMM'S

MODEL 37-NEW $31 / 2$ DIGIT BENCH DMM. 0.1% DC accuracy Analog/Digital Autoranging $=$ Volt, Ohms, Amps, Diode Testing $=30 \mathrm{kHZ}$ AC Bandwidth $:$ Fused 10A Range : Storage compart-ment-2 year warranty Reg. \$229 Sale $\$ 198$

MODEL 8060A-4½ DIGIT, TRUE RMS DMM
True RMS AC volt and amp measurement $=0.04 \%$ basic DC accuracy : Fast audible/ visual continuity tests \approx Relative reference (offset) L Low power ohms on all resistance ranges $:$ Constantcurrent diode test mode : Resistance measurements to $300 \mathrm{M} \Omega$. Frequency and dB measurements.
Reg. \$349 Sale \$308

TEST INSTRUMENTS

MODEL 8050A- $41 / 2$ DIGIT, BENCH DMM
0.03% basic DC accuracy - True rms AC voltage and current measurement, AC to 50 KHz . Conductance function checks high resistance to $100,000 \mathrm{M} \Omega \mathbf{\pi}$ high power or low-power ohms - Five voltage ranges, 200 mV to 1000 V - Extensive overload protection : Diode and dB measurement.
Reg. \$389 Sale $\$ 338$

CALL TOLL-FREE 1-800-323-5923 FREE SHIPPING to U.P.S. Shippable Destinations

V422 40 MHz DUAL-CHANNELSCOPE : Low profile portable - DC offset. 1 MV sensitivity. 3\% accuracy. 6" CRT with internal graticule. Alternate magnification for simultaneous display of $\mathrm{x} 1, \mathrm{x} 10$ swept waveforms! Plus vertical mode triggering: auto-focus; TV sync separation circuit; built-in signal delay; X-Y Mode. Only $12 \times 5 \times$ $141 / 2^{\prime \prime}$. 14.3 lbs . W/probes.

Reg. $\$ 925$

Sale Price ${ }^{\$ 678}$
V222 20 MHz DUAL-CHANNEL SCOPE. Similar to above, except has 20 MHz bandwidth. W/probes.
Reg. $\$ 715$

MODEL 75 Analog/digital display a Volts. onms. 10A, mA diode test

- Audible continua Audible continurange hold $\mathbf{~} 8.5 \%$ basic DC accuracy $2000+$ hour battery life $=3$ year Reg. \$99
Sale $\$ 88$
½ DIGIT DMMS

Analog/digital dis10A mA diode tes audible continyfy a "Touch Hold" Function a Autoange/range hold
. 0.3% basic DC accuracy $12000+$ hour battery life 3 year warranty
Multipurpose - Multipurpose Reg. \$139 Sale $\$ 118$

Model 2032 MHz Function Generator - 0.2 Hz to 2 MHz Function Generator - Sine, Square, Triangle Waveforms - External Sweep 1000:1 . TTL and 50 Ohm Outputs a Variable DC Offset - Wt. $2.6 \mathrm{lbs} .10 .2 \times 6 \times 2^{\prime \prime}$

Reg \$289
Sale $\$ 258$
-

Ultra-Portable Mini-Scope Model 1010

- 10 MHz Full-Featured Oscilloscope - AC or Battery operated with internal battery charger $: 10 \mathrm{mV}$ Sensitivity, 21 Time Base Ranges a Internal or External Trigger a Bright, clear Blue/ White CRT = Wt. $2 \mathrm{lb} ; 10.2 \times 6 \times 2^{\prime \prime}$ Reg. \$385 Sale \$338
-

Model 515600 MHz Frequency Counter - 8 Digit $1 / 2^{\prime \prime}$ LED Display \quad Wide Frequency Range: 5 Hz to 600 MHz - 10 mV RMS Sensitivity throughout range $=2$ ppm Time Base Accuracy - AC or DC Powered (AC Adaptor Included) ${ }^{\text {I }}$ Wt. $1.8 \mathrm{lbs} .10 .2 \times 6 \times 2^{\prime \prime}$ Reg. \$340

Sale $\$ 308$ Model $512,200 \mathrm{MHz}$ Handheld Counter Reg. \$145

LIMITED TIME OFFER WHILE QUANTITIES LAST, PHONE TODAY TOLL-FREE!

VISA-MASTERCARD-DISCOVER CARDS WELCOMED, OPEN ACCOUNT ORDERS TO RATED COMPANIES. ILLINOIS RESIDENTS ADD 7\% TAX.

FREE 116 page Joseph Electronics discount instrument catalog with your order or on request!
in the parts list will only work in conjunction with the X-band radar units-that is, assuming that they are the same ones as shown on the lead page of the article. Also not mentioned is whether or not a Kband diode and horn is available.

While the K-band output is mentioned in passing on page 42, he does not elaborate on any of the details. The K-band output is derived from a different divider chain, because the Doppler shift on that band is different than it is
on the X -band for a target traveling at the same speed.

Although there are several Kband frequencies used, I used 24.5 GHz for my computation. That results in a Doppler shift of 73.1 Hz per MPH. That can be figured out by one of two methods. One is to multiply the ratio of 24.5 GHz to 10.525 GHz (2.328) by 31.4 ; the other is to use the formula for Doppler shift, DS:

$$
\text { DS }(\mathrm{Hz} / \mathrm{MPH})=89.49 / \lambda
$$

where λ is the wavelength in cen-

CABLE TV SPECIALS CONVERTERS

JERROLD: DRZ-3DIC105-66 Channel Wireless ${ }^{5} 199 .{ }^{85}$
JRX-3 DIC- 36 Channel Corded Remote ${ }^{5} 149 .{ }^{95}$
JSX-3 DIC- $\mathbf{3 6}$ Channel Set Top. ${ }^{5} 129 .{ }^{85}$
SB-3 - 'The Real Thing' ${ }^{5119.95}$
MAGNAVOX: 6400-60 Channel Wireless w/Parental Lockout for Jerrold systems ${ }^{5} 199 .{ }^{95}$
ZENITH: Z-TAC Cable Add-On. ${ }^{3} 225.00$
VIEW STAR: EVSC-2000-60 Channel Wireless- with Parental Lockout. ${ }^{5} 99 .{ }^{85}$
EVSC-2000A-B-Same as above with
A-B Switch ${ }^{3} 109 .{ }^{95}$
View Star 1000-60 Channel Wireless with Volume ${ }^{5119 .}{ }^{35}$
MISCELLANEOUS
OAK: N -12 Mini-Code 5 $89 .{ }^{85}$
N-12 Mini-Code Vari-Sync ${ }^{5109 .}{ }^{\circ 5}$
N-12 Mini-Code Vari-Sync Plus Auto On-Off ${ }^{5} 165 .{ }^{00}$
JERROLD: $400 \& 450$ Handheld Transmitters. 29. ${ }^{95}$
HAMLIN: MLD-1200 39. ${ }^{\text {os }}$
NEW ITEMS: Standard Components-66 Channel Wireless- with Parental Lockout * 99. ${ }^{\text {8s }}$Scientific Atlanta
\qquad Call for PricePower Zapper Stun Gun, 46, 000V${ }^{3} 59 .{ }^{35}$
K-40 Radar Detector-Dash Model s199. ${ }^{\circ 5}$
K-40 Radar Detector-Remote. ${ }^{5} 229 .{ }^{95}$
ALL UNITS GUARANTEED. QUANTITY PRICES AVAILABLE.
timeters, which equals $30 /$ frequency in GHz .

Another item of note from the "Ask-RE" column in that same issue. A reader asked about an IC that would convert from a RGB signal to a composite signal. The author of the column did not know of a chip for generating the sync. Refer to the article on Cable-TV descrambling on page 53 , and you will find an IC to do just that. There is an article in a back issue of Ham Radio that provides complete construction instructions. I'm not sure which issue it was, but I think it came out four or five years ago.

And finally (I know, I know; my high school English teacher said never to start a sentence with and), who is the new advertiser on page 14? (Mr. Sestero refers to the NutriWheat Diet Program.-Editor) I'm sure that I speak for many of your faithful readers when I say that we don't need that kind of advertising in an electronics magazine. It reminds me of reading through the old Mechanix Illustrated magazines of 20 years ago. Please, let's not repeat that.

ROBERT T. SESTERO

Baltimore, MD
We start sentences with "and" regularly-in spite of what our high school English teachers said. We also use prepositions to end sentences with. Times change.Editor

INACCURACIES

I am writing to correct some of the many inaccuracies in the article, "The Early Days of Radio," by Martin Clifford, which appeared in the July issue. Hugo Gernsback must be turning in his grave! It is perhaps possible that some of them were due to editing, but I suspect that most came directly from the author, who hadn't done his homework. (By the way, the picture of an early radio station on the first page of the article is most interesting, and it would be pleasant to know something more about it. On the right side of the picture is a device that appears to be a microphone, either for a recording device or, perhaps, for radiotelephony. The instrument with a large dial at the center of the left side of the picture is also of interest.)

Here＇s your chance to win a complete monitoring package from Regency Electronics and Lunar Antennas． 18 scanners in all will be awarded，including a grand prize of the set－up you see above：the Regency HX1500 handheld，the Z60 base station scanner，the R806 mobile unit，and a Lunar GDX－4 Broadband monitoring／ reference antenna．

55 Channels to go！

When you＇re on the go，and you need to stay tuned into the action，take along the Regency HX1500．It＇s got 55 channels， 4 independent scan banks，a top mounted auxilliary scan control，liquid crystal display，rugged die－ cast aluminum chassis，covers ten public service bands including aircraft，and，it＇s keyboard programmable．

Compact Mobile

With today＇s smaller cars and limited installation space in mind，Regency has developed a new compact mobile scanner，the R806．It＇s the world＇s first microprocessor controlled crystal scanner．In addition，the R806 features 8 channels，programmable priority，dual scan speed，and bright LED channel indicators．

Base Station Plus！

Besides covering all the standard public service bands， the Regency Z 60 scanner receives FM broadcast， aircraft transmissions，and has a built－in digital quartz clock with an alarm．Other Z 60 features include 60

channels，keyboard programming，priority control，digital display and permanent memory．

Lunar Antenna

Also included in the grand prize is a broadband monitoring／reference antenna from Lunar Electronics． The GDX－4 covers 25 to 1300 MHz ，and includes a 6 foot tower．

Perhaps the most glaring errors appear in Fig. 1 and Fig. 2, which show schematics for crystal receivers that cannot work. (I think that those schematics were copied from other articles I have seen during the past few years; they were also written by someone who apparently did not understand electricity.) In both of those figures, the crystal and the headset are wired in series with the antenna and ground, and there is no directcurrent return path. As a result, no
current could or would flow in the headphones, hence no reception. There should also be a bypass capacitor across the phones, but that is of no importance in a receiver that can't work.

Figure 3, while also flawed, does correspond to early practice. The problem with it is that the headset is connected to the "hot" end of the tuning coil, and capacitance from headset to ground would affect tuning. That wouldn't be of much importance in a receiver

150	00
$\square 151$ B	Build Your Own Robot $\$ 12.00$
$\square 1528$	8-Ball Satellite TV Antenna $\$ 5.00$
$\square 106$	Radio-Electronics back issues (1986) . . $\$ 3.00$ Write in issues desired
$\square 105$	Radio-Electronics back issues (1985) . . \$3.50 Write in issues desired
$\square 104$	Radio-Electronics back issues (1984) . . $\$ 4.50$ (December 1984 issue is not available) Write in issues desired
$\square 103$ R	Radio-Electronics back issues (1983).... $\$ 5.00$ (Jan., Feb., May are not available) Write in issues desired
$\square 102$ R	Radio-Electronics back issues (1982) . $\$ 5.50$ (January 1982 is not available) Write in issues desired
$\square 101$ R	Radio-Electronics back issues (1981) . . $\$ 6.00$ (Jan., Feb., Mar., May, Jun., Oct., Dec. are not available) Write in issues desired
\square SP4	Special Projects \#4 (Summer 1982) . . $\$ 5.50$
\square SP5	Special Projects \#5 (Winter 1983) . . . \$5.50
\square SP6	Special Projects \#6 (Spring 1983) . . . \$5.50
\square SP7	Special Projects \#7 (Summer 1983) . . \$5.50
\square SP8	Special Projects \#8 (Fall 1983) \$5.50
\square SP9	Special Projects \#9 (Winter 1984) . . . $\$ 5.50$
\square SP10	Special Projects \#10 (Spring 1984) . . \$5.50
$\square 111 \mathrm{H}$	Hands-On Electronics \#1. $\$ 4.50$
$\square 112$	Hands-On Electronics \#2 \$4.50

To order any of the items indicated above, check off the ones you want. Complete the order form below, include your payment, check or money order (DO NOT SEND CASH), and mail to Hands-on-Electronics, Reprint Department, P.O. Box 4079, Farmingdale, NY 11735. Please allow 4-6 weeks for delivery.
 payable to Gernsback Publications, Inc.

ARTICLE

with such poor selectivity, however. Fig. 4 is OK, but Fig. 5 has the same problem as Fig. 3; in addition, there should be a bypass capacitor between the potentiometer arm and the detector, but its ommision was also typical of early receivers. Figs. 7 and 12 will work, although the use of a variable capacitor in series with the antenna will permit antenna circuit tuning and give much better selectivity.
A couple of other errors are less significant. The statement that "true solid-state receivers have been with us since $1918^{\prime \prime}$ would be more accurate if the date were 1906, when the Perikon detector was patented. The commercial use of crystal detectors in the following years was more limited by patent matters than by performance.

One more annoyingly incorrect statement is: "Early vacuum-tube rectifiers, such as the UX-201A and the UV-I99 triodes, cost about $\$ 15.00$." That statement contains three errors. First of all, those tubes were triode amplifiers and detectors, not rectifiers. Second, those particular tubes were not particularly early. Third, they never cost $\$ 15.00$. The UV201, the predecessor to the UX201A, was announced in November, 1920, at a cost of $\$ 6.50$. It was considered an amplifier, with the corresponding detector being the UV200, at $\$ 5.00$. Although those were not the first tubes available to the public, they were the first sold by RCA, and correspond roughly to the beginning of broadcasting. The UV1999 is of interest as an early "dry battery tube;" it was announced in December, 1922, and it cost $\$ 6.50$. The UX201A was a realtively late tube, introduced at \$2.50 in August, 1925, to replace the UV201A, which had been introduced at the same time as the UV199, and at the same price. The UV201A and the UX201A, like the UV199, had thoriated tungsten filaments, which greatly reduced the required filament power.

There is really no excuse for such a poor article, because many excellent reference books are available these days. For early vacuum tubes, I would recommend Saga of the Vacuum Tube, by Gerald Tyne, and 70 Years of Radio Tubes and Valves, by John Stokes.

PEIFORMLICE THAT IS OUT OF THIS WORLD...

...AT A DOWN TO EARTH PRICE

At last! Truly affordable test equipment with no compromise in design, and features you would expect to find only on oscilloscopes costing hundreds of dollars more! JDR Instruments presents two, new, high-performance models backed by a two year warranty and technical support which is only a phone call away. Perfect for the technician or advanced hobbyist, both models feature Dual Trace capability and a variety of operating and triggering modes, including $\mathrm{CH}-\mathrm{B}$ Subtract and $\mathrm{X}-\mathrm{Y}$ operation.

MODEL 2000 has a 20 MHz bandwidth and 20 calibrated sweeps ranging from .2 s to $.2 \mu \mathrm{~s}$. A convenient built-in component tester provides additional diagnostic power.

INCLUDES TWO HIGH QUALITY $1 \mathrm{x}, 10 \mathrm{x}$ TEST PROBES

MODEL 3500 features a 35 MHz bandwidth and exceptional 1mV/DIV sensitivity. Delayed sweep and variable holdoff allow stable viewing of complex waveforms. San Jose, California 95128 (408) 995-5430

Both are available from Antique Electronic Supply, 688 W. First Street, Tempe, AZ 85281. A couple of other interesting histories are The Development of Wireless to 1920, Arno Press, New York, I977, and The Continuous Wave-Technology and American Radio, 1900-1932, by Hugh Aitken, also available from Antique Electronics Supply. Anyone seriously interested in historical radio and wireless should join the Antique Wireless Association, Holcomb, New York. Dues are $\$ 8.00$ per year and include four issues of The Old Timer's Bulletin, which contains excellent articles of historical interest, in addition to many want ads. Membership applications should be sent to Bruce Roloson, Box 212, Penn Yan, New York 14527.

EDWARD PHILLIPS

San Gabriel, CA

The circuits shown in Figs. 1 and 2 are correct, and they can and do work. Apparently Mr. Phillips doesn't know the difference between a DC ground and an RF
ground. The circuit is grounded for RF, and current will flow in those circuits even if a capacitor is inserted in series with the antenna lead-in.

Hugo Gernsback need not turn in his grave, because those circuits, and others like them (surprise!) originally appeared in a book, How to Read Circuit Diagrams, published by Gernsback about 50 years ago.

It isn't necessary to put a bypass capacitor across the headphones. There is enough capacitance between the turns of the wire in the headphone to supply bypassing action for the carrier wave.

The headphones in Fig. 3 can be positioned before or after the crystal detector. The tuning is so extremely broad that the capacitance from headphones to ground is of little consequence.

I am well aware of the Perikon detector. However, it wasn't until about 1919 or 1920 that the iron pyrites crystal detector became a household item. As far as the price of tubes is concerned, one must
be aware that a new component is always at its highest price. As tube competition increased, and the supply of tubes went up, those early tubes dropped in price even lower than the figures Mr. Phillips stated.
I do not mind his comments on the article. What I do resent is the statement that Hugo Gernsback must be turning in his grave. That is arrogant and presumptous, and implies that Mr. Phillips knew Gernsback. I doubt that he ever met the man. I used to have lunch with Hugo Gernsback from time to time, and was also a guest in his home. I was in France with him, and together we visited a noted technical publisher in Paris. I have no doubt that I was his friend; I have a photograph from him inscribed, "To my friend, Martin Clifford."

I was impressed with the books Mr. Phillips mentions in his letter. I would suggest that he take some time and read them.-Martin Clifford
continued on page 33

Which Way To YOUR Future?

Are you at a crossroads in your career? Have you really thought about it? Are you planning for your future, or perhaps refusing to face the subject? Which way will you go - down the same old road? Or are you ready for something else?
In electronics you can't stand still. If you are not moving ahead, then you're falling behind. At the crossroads of your career, various choices are available - and, yes, decisions have to be made.

Which road will you take - one that doesn't go where you want to be, or one that leads to hard work but also to the better life? Ah, decisions, decisions!

Career decisions are so important that you need all the input you can get before locking-in on one of them. Grantham College of Engineering offers you one source of input which may help you in making that decision. It's our free catalog.

Ask for our free catalog and you may be surprised to learn how it is easily possible to earn a B.S. degree in electronics without attending traditional classes. Since you are already in electronics (you are, aren't you?), you can complete your B.S. degree work with Grantham while studying at home or at any convenient

Put Professional KNOWLEDGE and a COLLEGE DEGREE in your Electronics Career through HOME STUDY

 place.But don't expect to earn that degree without hard work. Any degree that's worth your effort can't be had without giving effort to the task. And of course it is what you learn in the process, as much as the degree itself, that makes you stand out above the crowd - that places you in an enviable position, prestige-wise and financially.

Grantham College of Engineering 10570 Humbolt Street

 Los Alamitos, California, 90720

Grantham offers this program, complete but without laboratory, to electronics technicians whose objectives are to upgrade their level of technical employment.

Recognition and Quality Assurance

Grantham College of Engineering is accredited by the Accrediting Commission of the National Home Study Council, as a degree-granting institution.

All lessons and other study materials, as well as communications between the college and students, are in the English language. However, we have students in many foreign countries; about 80% of our students live in the United States of America.

Only NRI GivesYou System for Total

You get it all. . . training for America's fastest growing career opportunity . . . training to service all computers. training on a total computer system. And only NRI training gives you all the skills and confidence to become a complete computer service technician.
Today, you can't successfully repair a computer with confidence unless you know that the peripheral equipment is operating properly. Only NRI can give you the wellrounded training you need because only NRI gives you a complete computer system. . . computer, monitor, disk drive, printer, software, even test instruments like a digital multimeter and logic probe. It all adds up to training that builds the knowledge, competence and ability you need to succeed as a computer service specialist.

Get inside the IBM PC compatible Sanyo

As an NRI student, you'll get total hands-on training as you actually build your own Sanyo 550 Series computer from the keyboard up. As you assemble it, you'll perform demonstrations and experiments that will give you a total mastery of computer operations and servicing techniques. You'll do programming in BASIC language-even run and interpret essential diagnostic software. You'll prepare interfaces for peripherals such as printers and joysticks. Using utility programs, you'll check

out the operation of the 8088 microprocessor. Step-by-step, NRI will guide you right into a high paying career in one of America's fastest growing fields.

New! Course now includes

 high performance printer Only NRI includes an advanceddot matrix printer as part of your hands-on training. Working with it, you'll get practical experience in adding peripherals, perform experiments bringing to life operating principles, and then go on to learn critical maintenance and servicing techniques, including changing the print head.

A Total Computer Systems Training

Understanding you can get only through experience

You need no previous knowledge to succeed with NRI．You start with the basics，rapidly building on the fundamentals of electronics with bite－size lessons to master advanced concepts like digital
logic，microprocessors，and computer memories．

You＇ll reinforce this new understanding with hands－on practical demonstrations and experiments that give you real world experience．You＇ll use the exclusive NRI Discovery Lab to

DIGITAL LOGIC PROBE Professional
digital logic probe makes analyzing digital circuit operation a simple task．
DISCOVERY I．AB Electronics comes to life on your NRI Discovery Lab＊You set up and modify prototype circuits， demonstrate action of components，gain valuable bench experience in construc－ tion，diagnosis，and repair of circuitry．

see what makes transistors tick．．． build and test working electronic circuits that duplicate key com－ puter circuitry．．．and construct digital logic circuits that demon－ strate computer performance．

Do it at home in your spare time

NRI trains you in your own home at your convenience．You learn at your own pace，backed at all times by your own NRI instructor and the entire NRI staff of educators and engineers．They＇re always ready to answer questions，give you guidance，follow your prog－ ress，and help you over the rough spots to keep you moving toward your goal．

100 page free catalog tells more．．．send today

Send the postage－paid reply card today for NRI＇s 100 page catalog that gives all the facts about computer training plus career training in robotics， data communications， TV／audio／video servic－ ing，and many other fields．You＇ll see how NRI can give you the skills and confidence you need for advancement，a new career－even a service business of your own in the existing world of electronics．If the card is missing，write to NRI at the address below．

McGraw－Hill Continuing Education Center 3939 Wisconsin Avenue Washington，DC 20016 1：H14
We＇ll give you tomorrow

Ask R-E

TABLEI-RHOMBIC DIMENSIONS

	Wavelengths per Leg	S	L	w	$\begin{gathered} G a_{1 /} \\ d B \end{gathered}$	Beam Width	\varnothing
VHF TV Channe/s 2-6	6	$87^{\prime}-0^{\prime \prime}$	$162^{\prime}-0^{\prime \prime}$	$60^{\prime}-0^{\prime \prime}$	12	6°	68°
	4	$58^{\prime}-0^{\prime \prime}$	104'0"	$54^{\prime}-0^{\prime \prime}$	10	8°	62°
	2	$29^{\prime}-0^{\prime \prime}$	$46^{\prime}-0^{\prime \prime}$	$36^{\prime}-0^{\prime \prime}$	7	13°	52°
$F M$	3	$30^{\prime}-0$	$55^{\prime}-9^{\prime \prime}$	$22^{\prime}-6^{\prime \prime}$	12	6°	70°
VHF TV Channels 7-13	6	$30^{\prime}-9^{\prime \prime}$	$58^{\prime}-0^{\prime \prime}$	$23^{\prime}-2^{\prime \prime}$	12	6°	68°
	4	20'-6"	36'-6"	$19^{\prime}-0^{\prime \prime}$	10	8°	62°
	2	$10^{\prime}-3^{\prime \prime}$	16'6' ${ }^{\prime \prime}$	$12^{\prime}-8^{\prime \prime}$	7	13°	52°
UHF TV channels 14-47	6	$9^{\prime}-7^{\prime \prime}$	$17^{\prime}-8^{\prime \prime}$	$7^{\prime}-2^{\prime \prime}$	12	6°	68°

TV-RHOMBIC ANTENNAS

Your response to the request for a balun for a TV rhombic left me puzzled. Whoever heard of a rhombic for TV frequencies? I thought that rhombics are used to obtain directivity at low frequencies when you have enough real estate to establish an "antenna farm." What are the dimensions for a TV rhombic? How does its performance compare with
that of a Yagi?-O. K. H., New Strawn, KS.

When the desired TV stations are 75 to 150 miles or so away and all in nearly the same direction, a good rhombic can provide high gain while offering broader frequency response and a constant impedance over a broader range than a Yagi. Specifically, a rhombic provides high gain over a $2: 1$ fre-

WRITE TO:

ASK R-E

Radio-Electronics $500-\mathrm{B}$ Bi-County Blyd. Farmingdale, NY 11735
quency range; in other words, the design frequency $\pm 50 \%$. Although any antenna for receiving distant stations should be as high as practical, a rhombic two or three wavelengths above ground may outperform a high-gain Yagi on a much higher tower.
Rhombic antennas were widely used in remote areas in the early days of television; they're still not uncommon in many rural areas today. A rhombic with six wavelengths in each leg can provide 12 $d B$ of gain in the forward direction and it can be small enough to fit on many residential lots. Some highband and UHF TV rhombics are small enough to be mounted on a rotator on a tower.
The diagram of a rhombic for TV frequencies is shown in Fig. 1. The dimensions of each leg for receiving signals at various frequencies are shown in Table 1. A rhombic's beam-width is usually much narrower than than that of a Yagi with equal gain, so you must be extremely careful to orient the antenna carefully to within a degree or two. Beam-width decreases and tilt angle increases with the number of wavelengths in each leg. For maximum gain, orientation must be accurate within ± 3, ± 4, and ± 6.5 degrees for rhombics with six, four, and two wavelengths per leg, respectively.

The rhombic should be terminated by an 800 -ohm non-inductive resistor. You can use two 390ohm, 2 -watt resistors in series.

DARKROOM TIMER

I need help in designing a darkroom timer for my enlarger. I'd like a countdown timer that can be set from 0 to 120 seconds in 0.1-
second increments．Time will be dis－ played on a 4 －digit LED readout．A relay will energize the enlarger and turn it off at the end of the timer period．I＇ve been thinking of a $10-$ digit keypad or three columns of in－ dividual switches for setting 0．1－， $1.0-$ ，and 10 －second increments．－G． K．，Tampa，FL．

The design of a＂dream＂ darkroom timer such as you de－ scribe is a project that would prob－ ably require much troubleshoot－ ing and several trips back to the drawing board before satisfactory performance is achieved．Unfor－ tunately，we cannot undertake the R\＆D work needed to provide you with a foolproof design．

You can find some designs that do part of what you want in back issues of electronics and pho－ tography magazines．Consult the Applied Science and Technology Index and the Readers Guide to Periodical Literature in your local library．And try to get a copy of Intersil＇s Timers，Counters，and Display Drivers Applications Handbook．Write to Intersil at 10710 N．Tantau Ave．，Cuper－ tino，CA 95014．That 30－page book－ let is chock full of circuits for programmable interval timers， stopwatches，counters，and digital displays and drivers．If it is not available，try for a copy of Intersil＇s Hot Ideas in CMOS．Chapter 6 of that work contains data sheets，ap－ plication notes，and circuits cover－ ing the firm＇s line of counters， timers，and display drivers．

POWER DISTRIBUTION GRIDS

For a college research project，I＇m doing a study on the losses in elec－ trical power over long－distance power lines．I need maps showing the power distribution grids throughout the United States． Where can those maps be ob－ tained？－D．D．，Bloomington，IN．
Try the＂Chief Transmissions En－ gineer＂or the＂Director of Power Distribution＂of your local power company．If he can＇t help，contact your Congressman or Senator．The type of information you＇re looking for is probably available through a governmental agency such as the Department of Energy，the Energy Information Administration，or the Federal Energy Regulatory Com－ mission．

Exclusive，triple patented dynamic cap and coil analyzing ．．．guaranteed to pinpoint your problem every time or your money back

with the all new LC75＂Z METER 2＂ Capacitor Inductor Analyzer Patented $\$ 995$

The＂Z METER＂is the only LC tester that enables you to test all capacitors and coils dynamically－plus，it＇s now faster，more accurate，and checks Equivalent Series Resistance（ESR）plus small wire high resistance coils．
Eliminate expensive part substitution and time－consuming shotgun－ ning with patented tests that give you results you can trust every time． Test capacitor value，leakage，dielectric absorption，and ESR dynamically； with up to 600 volts applied for guaranteed 100% reliable results－it＇s exclusive－it＇s triple patented．
Save time and money with the only 100% reliable，in－or out－of－circuit inductor tester available．Dynamically test inductors for value，shorts，and opens，automatically under＂dynamic＂circuit conditions．
Reduce costly parts inventory with patented tests you can trust．No more need to stock a large inventory of caps，coils，flybacks，and IHVTs． The＂Z METER＂eliminates time－consuming and expensive parts substitut－ ing with 100% reliable LC analyzing．
Turn chaos into cash by quickly locating transmission line distance to opens and shorts to within feet，in any transmission line．
Test troublesome SCRs \＆TRIACs easily and automatically without investing in an expensive second tester．The patented＂Z METER 2 ＂even tests SCRs，TRIACs，and High－Voltage Diodes dynamically with up to 600 volts applied by adding the new SCR250 SCR and TRIAC Test Accessory for only $\$ 148$ or FREE OF CHARGE on Kick Off promotion．
To try the world＇s only Dynamic LC Tester for yourself，CALL TODAY， WATS FREE，1－800－843－3338，for a FREE 15 day Self Demo．

Call Today Wats Free 1－800－843－3338
曰三NC〇FF
3200 Sencore Drive
Sioux Falls，SD 57107
innovatively designed
605－339－0100 In SD Only

Super Disk
DiskettesNow...Diskettes you can swear by, not swear at.
Lucky for you, the diskette buyer, there are many diskette brands to choose from. Some brands are good, some not as good, and some you wouldn't think of trusting with even one byte of your valuable data. Sadly, some manufacturers have put their profit motive ahead of creating quality products. This has resulted in an abundance of low quality but rather expensive diskettes in the marketplace.

A NEW COMPANY WAS NEEDED AND STARTED

Fortunately, other people in the diskette industry recognized that making ultra-high quality diskettes required the best and newest manufacturing equipment as well as the best people to operate this equipment. Since most manufacturers seemed satisfied to give you only the everyday quality now available, an assemblage of quality conscious individuals decided to start a new company to give you a new and better diskette. They called this product the Super Disk diskette, and you're going to love them. Now you have a product you can swear by, not swear at.
HOW THEY MADE THE BEST DISKETTES EVEN BETTER The management of Super Disk diskettes then hired all the top brains in the diskette industry to make the Super Disk product. Then these top bananas (sometimes called floppy freaks) created a new standard of diskette quality and reliability. To learn the "manufacturing secrets" of the top diskette makers, they've also hired the remaining "magnetic media moguls" from competitors around the world. Then all these world class, top-dollar engineers, physicists, research scientists and production experts (if they've missed you, send in your resume to Super Disk) were given one directive...to pool all their manufacturing know-how and create a new, better diskette.
HOW SUPER DISK DISKETTES ARE MANUFACTURED The Super Disk crew then assembled the newest, totally quality monitored, automated production line in the industry. Since the manufacturing equipment at Super Disk is new, it's easy for Super Disk to consistently make better diskettes. You can always be assured of ultra-tight tolerances and superb dependability when you use Super Disk diskettes. If all this manufacturing mumbo-jumbo doesn't impress you, we're sure that at least one of these other benefits from using Super Disk diskettes will:

1. TOTAL SURFACE TESTING - For maximum reliability, and to lessen the likelihood of disk errors, all diskettes must be totally surface tested. At Super Disk, each diskette is 100% surface tested. Super Disk is so picky in their testing, they even test the tracks that are in between the regular tracks.
2. COMPLETE LINE OF PRODUCTS - For a diskette to be useful to you and your computer, it must be compatable physically. Super Disk has an entire line of $51 / 4$-inch and $31 / 2$-inch diskettes for your computer.
3. SPECIALLY LUBRICATED DISK-Super Disk uses a special oxide lubricant which is added to the base media in the production of their diskettes. This gives you a better disk drive head to media contact and longer head and disk life.
4. HIGH TEMPERATURE/LOW-MARRING JACKET - A unique high temperature and low-marring vinyl jacket allows use of their product where other diskettes won't work. This special jacket is more rigid than other diskettes and helps eliminate dust on the jacket. 5. REINFORCED HUB RINGS - Standard on all 48 TPI Super Disk mini-disks, to strengthen the center hub hole. This increases the life of the disk to save you money and increase overall diskette reliability.
5. DISK DURABILITY - Super Disk diskettes will beat all industry standards for reliability since they will give you more than 75% of the original signal amplitude remaining even after an average (Weibul B-50) of 30 million passes. They are compatible with all industry specifications as established by ANSI, ECMA, ISO, IBM and JIS.
6. CUSTOMER ORIENTED PACKAGING - All Super Disk diskettes are packaged 10 diskettes to a carton and 10 cartons to a case. The economy bulk pack is packaged 100 or 500 disks to a case without envelopes or labels.
7. LIFETIME WARRANTY - If all else fails, remember, all disks made by Super Disk Inc., have a lifetime warranty. If any Super Disk diskette fails to meet factory specifications, Super Disk Inc. will replace them under the terms of the Super Disk warranty. 9. SUPERB VALUE - With Super Disk's automated production line, high-quality, errorfree disks are yours without the high cost.

SAVE MONEY... QUANTITY DISCOUNTS AVAILABLE
Super Disk diskettes are packed 10 diskettes to a carton and 10 cartons to a case. To save you even more, we also offer Super Disk bulk product where 100 or 500 diskettes are packaged in the same box without envelopes or labels. Since we save packaging costs, these savings are passed on to you. For best value, you should order in increments of 100 diskettes. Quantity discounts are also available. Order 200 or more disks at the same time and deduct 1\%; 300 or more $2 \% ; 400$ or more $3 \% ; 500$ or more $4 \% ; 1,000$ or more $5 \% ; 2,000$ or more $6 \% ; 3,000$ or more 7% and 5,000 or more disks earns you an 8% discount off our quantity 100 price. Super strong and tear resistant $51 / 4^{\prime \prime}$ diskette envelopes are available from us for only $\$ 10.00$ per pack of 100 . Use order \# CV-5 for a 100 pack of $51 / 4^{\prime \prime}$ diskette envelopes.

396 per disk Quantity One
 Almost all diskettes are immediately available from Super Disk. With

 our efficient warehouse facilities, your order is normally shipped in less than a day.$$
\begin{aligned}
& \text { SAVE ON SUPER DISK DISKETTES } \\
& \text { Product Description }
\end{aligned}
$$

51/4" SSSD Soft Sector w/Hub Ring Retail 10 pack 6431-HR 0.64 Super Disk

price $51 / 4^{\prime \prime}$ Same as above, but bulk pack w/o envelope 6437-HR 0.39 $51 / 4^{\prime \prime}$ SSDD Soft Sector w/Hub Ring Retail 10 pack 6481-HR 0.68 $51 / 4^{\prime \prime}$ Same as above, but bulk pack w/o envelope $6487 \cdot$ HR $\quad 0.43$ $51 / 4^{\prime \prime}$ DSDD Soft Sector w/Hub Ring Retail 10 pack 6491-HR 0.74 51/4" Same as above, but bulk pack w/o envelope 6497-HR $\quad 0.49$ 51/4" DSQD Soft Sector (96 TPI) Retail 10 pack 6501-HR 1.09 51/4" Same as above, but bulk pack w/o envelope 6507-HR 0.79 5114" DSHD for IBM PC/AT - bulk pack 6667-HR 1.49 | $31 / 2^{\prime \prime}$ | SSHD (135 TPI) - Retail 10 pack | 6311-HR |
| :--- | :--- | :--- |
| $3^{1 / 2 \prime} 2^{\prime \prime}$ SSHD (135 TPI) - bulk pack | $6317 \cdot H R$ | 1.50 | 3½ SSHD (135 TPI) - bulk pack $31 / 2^{\prime \prime}$ DSHD (135 TPI) - Retail 10 pack 6317-HR $\begin{array}{lll}31 / 2^{\prime \prime} \text { DSHD (135 TPI) - bulk pack } & \text { 6327-HR } & 1.49\end{array}$ SSSD = Single Sided Single Density; SSDD = Single Sided Double Density; DSDD = Double Sided Double Density; DSQD = Double Sided Quad Density; SSHD = Single Sided High Density; DSHD = Double Sided High Density.

BUY YOUR DISKETTES FROM CE WITH CONFIDENCE

To get the fastest delivery of your diskettes, phone your order directly to our order desk and charge it to your credit card. Written purchase orders are accepted from approved government agencies and most well rated firms at a 10\% surcharge for net 10 billing. For maximum savings, your order should be prepaid. All sales are subject to availability, acceptance and verification. All sales are final. All prices are in U.S. dollars. Prices, terms and specifications are subject to change without notice. Out of stock items may be placed on backorder or substituted for equivalent product unless we are instructed differently. A $\$ 5.00$ additional handling fee will be charged for all orders with a merchandise total under $\$ 50.00$. All shipments are F.O.B. CE warehouse in Ann Arbor, Michigan. No COD's. Non-certified checks require bank clearance. Michigan residents add 4\% sales tax or supply your tax ID number and reason for tax exemption.
For shipping charges add $\$ 6.00$ per 100 diskettes and/or any fraction of $10051 / 4$-inch or $31 / 2$-inch diskettes for U.P.S./R.P.S. ground shipping and handling in the continental U.S. UPS 2nd day air rates are three times continental U.S. rates. For Canada, Puerto Rico, Hawaii, Alaska, or APO/FPO delivery, shipping is three times the continental U.S. rate.

Mail orders to: Communications Electronics Inc., Box 1045, Ann Arbor, Michigan 48106-1045 U.S.A. If you have a Discover, Visa or Master Card, you may call and place a credit card order. Order toll-free in the U.S. Dial 800-USA-DISK. In Canada, order toll-free by calling 800-CA1-DISK. If you are outside the U.S. or in Michigan dial 313-973-8888. Telex anytime 671-0155 (6710155 CE UW). Order today.
Copyright © 1986 Communications Electronics Inc. Ad \#100186-HR

WIND－GENERATED POWER FOR SALE

As an experimenter，I＇ve long been interested in wind－generated elec－ trical power．The idea of putting up a windmill and generating power for my own use and for selling to the power company is very attractive． However，the power company re－ quires that I install a synchronous inverter between the wind generator and the power line．Can you supply the schematic of a synchronous in－ verter？－D．B．，Astoria，OR．

A windmill generator produces direct current that must be inver－ ted（converted）to alternating cur－ rent before it can be used to power most household appliances，and certainly before it can be fed into the public－utility power lines．A synchronous inverter is a type of motor－generator set．The Amer－ ican National Standards Institute describes a synchronous inverter as＂An inverter that combines both motor and generator action in one armature winding．It is excited by one magnetic field and changes direct－current power into alternat－ ing－current power．＂

Engineers from our tri－state re－ gional power company and from an electric－power co－operative say that if you have enough power available to interest them－several nundred－thousand kilowatts－ they would specify the inverter and you would have to have it built to their specifications．
PHILCO AM／FM SERVICE DATA I need the schematic and service data for a Philco model N－1740－124 AM／FM radio that was manufactured around 1963．Can you help？－M． W．，New Haven，CT．

The receiver that you are inter－ ested in is covered in Sams Pho－ tofact Set No．794，Folder No． 8.

Other readers who need sche－ matics and service data on many makes and models of consumer electronics products that were manufactured between 1946 and the present may find that informa－ tion in a Sams Photofact folder． You can call Sams toll－free at 800－428－SAMS and ask for the name and address of the Photofact distributor in your area．You may also be able to obtain information on availability of the data you need．

R－E

Analyze defective waveforms faster，more accurately，and more confidently－every time or your money back

with the SC61 Waveform Analyzer
Patented
\＄2，995
If you value your precious time，you will really want to check out what the exclusively patented SC61 Waveform Analyzer can do for you． 10 times faster， 10 times more accurate，with zero chance of error．
End frustrating fiddling with confusing controls．Exclusive ultra solid ECL balanced noise cancelling sync amplifiers，simplified controls，and bright blue dual trace CRT help you measure signals to 100 MHz easier than ever．
Accurately and confidently measure waveforms from a tiny 5 mV all the way to a whopping $3,000 \mathrm{~V}$ without hesitation with patented 3，000 VPP input protection－eliminates expensive＂front end＂repairs and costly equipment downtime．
Make only one circuit connection and push one button for each circuit parameter test：You can instantly read out DC volts，peak－to－peak volts and frequency 100% automatically with digital speed and accuracy． It＇s a real troubleshooting confidence builder．
Confidently analyze complex waveforms fast and easily．Exclusive Delta measurements let you intensify any waveform portion．Analyze glitches，interference signals，rise or fall times or voltage equivalents be－ tween levels；direct in frequency or microseconds．
Speed your digital logic circuit testing．Analyzing troublesome divide and multiply stages is quicker and error free－no time－consuming graticule counting or calculations．Simply connect one test lead to any test point，push a button，for test of your choice，for ERROR FREE results．
To see what the SC61 can do for your troubleshooting personal productivity and analyzing confidence，CALL TODAY，WATS FREE，1－800－843－3338， for a FREE 15 day Self Demo．

Call Today Wats Free 1－800－843－3338

3200 Sencore Drive
Sioux Falls，SD 57107
innovatively designed 605－339－0100 In SD Only with your time in mind．

EQUIPMENT REPORTS

Beckman Circuitmate LP25 Logic Probe

The easy way to troubleshoot digital circuits

CIRCLE 9 ON FREE INFORMATION CARD

HOWEVER DIFFICULT IT IS TO DESIGN digital circuits, it's even more difficult to get them working properly. In a world where the delay of a few microseconds can mean the difference between a hit and a miss, pinpointing problems can be a problem in itself. There are lots of ways to debug circuits but all of them have one thing in commonyou need tools to do the job.

If you can't afford an oscilloscope and a logic analyzer, all is not lost: You can still do a good amount of troubleshooting with a logic probe. Once upon a time, logic probes only indicated logic highs and lows, and they did that by using a resistor and an LED. Today's commercially available probes are a lot more sophisticatedand a lot more useful.

The Circuitmate LP25 logic probe from Beckman Industrial (630 Puenta Street, Brea, CA 92621) is an inexpensive way to peek inside a digital circuit. It has every one of the features you'd like to see on a probe and, wonder of wonders, a reasonable price tag as well. At a suggested list of $\$ 39.95$, the LP25 will pay for itself the first time it saves you hours of debugging.

The $L P 25$ is extremely easy to use and is compatible with any of the logic familes you might be using. A small switch on the probe lets you select either a TTL or CMOS detection threshold, which is necessary because the industry standards for those two families are different. TTL specifications are less than 0.8 volt for a low and greater than 2.3 volts for a high. CMOS normally switches at about 50% of the supply rail but the industry standard is 70% of V_{CC} for a high and 30% of V_{CC} for a low. The TTL setting on the probe also is good for use with DTL, RTL, and HTL.

Electronics Paperback Books

EVERY BOOK IN THIS AD \$6 OR LESS!

BP125-25 SIMPLE AMATEUR BAND ANTENNAS..... $\$ 5.00$. All are inexpensive to build, yet perform well. Diodes, beams, triangle and even a mini rhombic.
\square BP128-20 PROGRAMS FOR THE ZX SPECTRUM \& 16K ZX81.....\$5.75. PROgrams to run. Programs to have fun with. Even programs that will help you learn to write programs.

- 160-COIL DESIGN \& CONSTRUCTION MANUAL..... S5.95. How the hobbyis can build RF, IF, audio and power coils, chokes and transformers. Covers AM, FM and TV applications.
- 208-PRACTICAL STEREO \& QUADROPHONY HANDBOOK..... $\$ 3.00$. A reference book for all interested in stereo and multichannel sound reproduction.
\square BP99-MINI-MATRIX BOARD PROJECTS..... 55.00 . Here are 20 useful circuits that can be built on a mini-matrix board that is just 24 holes by ten copper-foil strips.
\square BP157-HOW TO WRITE ZX SPECTRUM AND SPECTRUM + GAMES PROGRAMS.....\$5.95. A crystal-clear step-by-step guide to writing your own graphics games programs.
\square BP117-PRACTICAL ELECTRONIC BUILDING BLOCKS-Book 1.....\$5.75. Oscillators, Timers, Noise Generators, Rectifiers, Comparators, Triggers and more.
\square 219-SOLID-STATE NOVELTY PROJECTS..... $\$ 4.95$. Fun projects include the Optomin, a musical instrument that is played by reflecting a light beam with your hand, and many more.
$\square 222$-SOLID STATE SHORT WAVE RECEIVERS FOR BEGINNERS..... 55.00 . Modern solid-state circuits that will deliver a fairly high level of performance.
\square BP126-BASIC \& PASCAL IN PARALLEL......S4.95. Takes these two programming languages and develops programs in both languages simultaneously.
\square 224-50 CMOS IC PROJECTS..... $\mathbf{\$ 5 . 2 5}$. Includes sections on multivibrators, amplifiers and oscillators, trigger devices, and special devices.
225-A PRACTICAL INTRODUCTION TO DIGITAL IC'S.....\$4.95. Mainly concerned with TTL devices. Includes several simple projects plus a logic circuit test set and a digital counter timer.
\square 226-HOW TO BUILD ADVANCED SHORT WAVE RECEIVERS..... $\mathbf{\$ 5 . 5 0}$. Full practical construction details of a number of receivers are presented.
$\square 227$-BEGINNERS GUIDE TO BUILDING ELECTRONIC PROJECTS..... $\$ 5.00$ How to tackle the practical side of electronics so you can successfully build electronic projects.
\square BP6-ENGINEERS AND MACHINISTS REFERENCE TABLES..... $\$ 2.25$. Screw thread data, drill sizes, circle division, angles, tapers and more.
\square 123-FIRST BOOK OF PRACTICAL ELECTRONIC PROJECTS.....S3.75. Projects include audio distortion meter, super FET receiver, guitar amplifier, metronome and more.
\square BP24-52 PROJECTS USING IC 741..... $\$ 5.25$. Lots of projects built around this one available IC
\square BP32-HOW TO BUILD YOUR OWN METAL \& TREASURE LOCATORS..... $\$ 5.00$. Electronic and practical details on the simple and inexpensive construction of hetrodyne metal locators.
\square BP33-ELECTRONIC CALCULATOR USERS HANDBOOK..... $\$ 5.75$. Invaluable book for all calculator owners. Tells how to get the most out of your calculator.
\square BP36-50 CIRCUITS USING GERMANIUM, SILICON \& ZENER DIODES..... $\$ 5.00$. A collection of useful circuits you'll want in your library.

BP37-50 PROJECTS USING RELAYS, SCR'S \& TRIACS..... $\$ 5.00$. Build priority indicators, light modulators, warning devices, light dimmers and more.
\square BP39- 50 FET TRANSISTOR PROJECTS..... $\$ 5.50$. RF amplifiers, test equipment, tuners, receivers, tone controls, etc.
\square BP42-SIMPLE LED CIRCUITS.....\$5.00. A large selection of simple applications for this simple electronic component
\square BP127-HOW TO DESIGN ELECTRONIC PROJECTS.....s5.75. Helps the reader to put projects together from standard circuit blocks with a minimum of trial and error.
\square BP122-AUDIO AMPLIFIER CONSTRUCTION.....\$5.75. Construction details for preamps and power amplifiers up through a 100 -watt DC-coupled FED amplifier
\square BP43-HOW TO MAKE WALKIE TALKIES..... $\$ 5.00$. Equipment for low-power hand-held or portable operation.
\square BP45-PROJECTS IN OPTOELECTRONICS..... $\$ 5.00$. Includes infra-red detectors, transmitters, modulated light transmission and photographic applications.
\square BP48-ELECTRONIC PROJECTS FOR BEGINNERS..... $\$ 5.00$. A wide range of easily completed projects for the beginner. Includes some no-soldering projects.
\square BP49-POPULAR ELECTRONIC PROJECTS..... $\$ 5.50$. Radio, audio, household and test equipment projects are all included.

- BP51-ELECTRONIC MUSIC AND CREATIVE TAPE RECORDING..... $\$ 5.50$. Shows how you can make electronic music at home with the simplest and most inexpensive equipment.
\square BP56-ELECTRONIC SECURITY DEVICES..... $\$ 5.00$. Includes both simple and more sophisticated burglar alarm circuits using light, infra-red, and ultrasonics.
\square BP59-SECOND BOOK OF CMOS IC PROJECTS..... 55.00 . More circuits show ing CMOS applications. Most are of a fairly simple design.
\square BP72-A MICROPROCESSOR PRIMER..... $\mathbf{\$ 5 . 0 0}$. We start by designing a small computer and show how we can overcome its shortcomings.
\square BP78-PRACTICAL COMPUTER EXPERIMENTS..... $\$ 5.00$. Construct typical computer circuits using descret logic to form a basic understanding of how comput ers function.
\square BP91-AN INTRODUCTION TO RADIO DXING..... $\mathbf{\$ 5 . 0 0}$. How you can tune in on those amateur and commercial broadcasts from around the world in the comfort of your home.
\square BP94-ELECTRONIC PROJECTS FOR CARS AND BOATS..... $\$ 5.00$. Fifteen simple projects that you can use with your car or boat. All are designed to operate from 12 -volt DC supplies.

ELECTRONIC TECHNOLOGY TODAY INC.
P.O. Box 240, Massapequa Park, NY 11762-0240

Name

Address
City \quad State Zip RE-1286

OUTSIDE USA \& CANADA
Multiply Shipping by 2 for sea mail
Multiply Shipping by 4 for air mail
Total price of merchandise
Sales Tax (New York State Residents only)
Shipping (see chart).
All payments must
be in U.S. funds
Total Enclosed
\qquad

High and low logic levels are indicated with red and green LED's as well as high and low tones. Since the audio is generated by a small piezo element, the output level is rather low and you'll have to turn down your radio to hear it. The tones produced by the LP25 are about 2 kHz for a high and 1 kHz for a low. If you've never used a probe with an audio signal before, you'll wonder how you ever got along without one. It's really a tremendous convenience to be
able to test circuit points without having to look at the probe.

The LP25 can do more than show logic levels. If you're looking at clock pulses, the probe indicators will not only modulate, but they'll also give you some idea of the waveform. Different types of waveforms will produce both different LED combinations and sounds. The instruction sheet has a small chart to use in understanding what the probe is telling you.
The frequency range of the LP25

Desoldering Tool SALE $\$ 1595$ EA. 20-240 Volt. 150/60Hz. 25-30 Watt. Can be used for both soldering and desoldering. BM-483		Audiophile Headphone with Volume Control and Walkman Style Adapter SALE $\$ 2495$ BM-398
CRT Brightner with Isolation Transformer $\$ 825$		GE Voltage Supressor GESP-753 UL Listed SALE \$1595 EA.
		4 Amp Power Supply SALE $\underset{\text { BM-231 }}{\$ 1875}$
46 Channel Block Converter with Fine Tune Control	10" Replacement Woofer 8 ohm 35/70 Watt	

ORDER BY PHONE
 Electronic Parts \& Accessories
 IN NYS CALL:
 (718) 436-9700

 a unit of ALPHA-KENCO INC.3820 14th Avenue, Brooklyn, NY 11218

call for our free CATALOG

Beckman					LP25				
OVERALL PRICE									
$\begin{aligned} & \text { EASE } \\ & \text { OF USE } \end{aligned}$									
INSTRUCTION MANUAL									
PRICE/VALUE									
	12	3	4	5	6	7	8	9	10

goes from DC to 25 MHz but its state indicators are responsive only up to 200 kHz . For any higher frequencies, circuit conditions are shown on the pulse catcher. A yellow LED near the back of the probe will flash whenever a logic transition occurs and the circuitry will see pulses as narrow as 30 nanoseconds. If you're looking at clock pulses faster than 200 kHz , the high and low LED's may or may not light, but the yellow LED will be flashing so rapidly it will appear to be on constantly.

Since the pulse-detector circuitry is triggered by both positiveand negative-going transitions, the LED will be flickering at twice the clock rate. Although Beckman lists 25 MHz as the upper limit of the probe, it didn't start to get flakey until the test frequency was past 40 MHz .
The pulse-detection circuitry in the probe can be made either to reset itself after each detection or to latch. That is done using the PULSE/MEMORY switch on the probe. In normal use, you would put the switch in the pulse position. But if you're looking out for an occasional line glitch or pulse, flip the switch to MEMORY and go out for a pastrami sandwich. If the pulse shows up, the probe will detect it and latch the LED on.
There's no way that a logic probe, even one like the $L P 25$, can substitute for a more powerful instrument such as a scope. If you want to do heavy-duty circuit debugging, a scope is the way to go; but for quick and dirty troubleshooting, you'll have to do a lot of looking before you find something as simple and useful as Beckman's LP25. It's powerful, well made, and won't put a big hole in your wallet.

Beckman Circuitmate PR41 Logic Pulser

A logic probe can't do it all by itself!

CIRCLE 10 ON FREE INFORMATION CARD

A LOGIC PROBE LIKE THE THE LP25 IS A very useful stand-alone circuit-debugging tool, but its utility can really be increased by using a logic pulser, such as the Circuitmate PR41 from Beckman Industrial Corporation (630 Puente Street, Brea, CA 92621). Both are perfect tools for people who don't want to spend a whole bunch of money on a set of basic instruments to help in designing and building digital electronic circuits. The PR41 lists
for just $\$ 44.95$.
Logic pulsers are invaluable for forcing digital IC's to change state. You can do the same thing with a clip lead and a resistor; but the hallmark of digital circuitry is controlled changes and, as we all know, you can't be very precise if you're debugging stuff with nothing more than a hunk of wire. Logic pulsers do their thing accu-rately-and safely. That's important since a heavy-handed ap-
proach usually produces nothing more than smoke.

The PR41 draws its power from the circuit under test. The coiled cord coming out of the back of the pulser ends in two clip-leads. All you have to do is to connect them to power and ground on your board, and the pulser is operational. Putting the unit to use involves nothing more than touching the tip to the input of the IC.

The circuitry in the pulser can operate at two different rates. Which one you choose will depend on what you're trying to do. The small slide switch allows you to select between pulse rates of 400 Hz and .5 Hz . The higher rate is useful if you want to clock part of your circuit and watch the results farther down the line. If you just want to force a logic translation, you're better off at the slow rate, since it will give you enough time to remove the tip from the IC before the second pulse is generated. You can see the number of pulses produced by watching the LED at the tip of the pulser.

COPPER ELECTRONICS

4200 PRODUCE ROAD - LOUISVILLE, KENTUCKY 40218 Call us fREE 1-800-626-6343
or write for FREE Flyer.

We have a national factory warranty service on many brands, and we service All CB, Amateur, and Commercial Equipment.
THE LOWEST PRICES IN THE COUNTRY!

Even the finest equipment in the world cannot guarantee noise-free operation. One "dirty" connection anywhere in the electrical path can cause unwanted noise or signal loss

"MORE THAN A CONTACT CLEANER"

CRAMOLIN ${ }^{3}$ is a fast-acting, anti-oxidizing lubricant that cleans and preserves all metal surfaces, including gold.
When applied to metal contacts and connectors, CRAMOLIN ${ }^{\text {® }}$ removes resistive oxides as it forms a protective molecular layer that adheres to the metal surfaces and maintains maximum electrical conductivity.
CRAMOLIN" - USED BY THOSE WHO DEMAND THE BEST:

1175-0 Induatrial Ave., (P.O. Box JJ-Escondido, CA 92025-0051 U.S.A. - (819) 743-7143

RCA＇s Power Safe surge suppressors absorb voltage surges before your customers＇electronics get damaged．

Now you can help your customers protect their expensive electronic equip－ ment from sudden shock with two new surge suppres－ sors from RCA．
The Power Safe（SK406） protects TVs，computers， microwaves and more by absorbing transient voltage surges resulting from near－ by lightning strikes，load switching and other causes before the surge hits the equipment．Handsomely designed and easy to in－ stall，this handy six－outlet strip simply plugs into any grounded wall outlet．

The Power Safe Plus （SKF406）protects every way the Power Safe does， plus it filters out electronic noise interference．The sup－ pressor＇s high－frequency bi－directional filter senses， absorbs，and dissipates noise interference before it can reach the equipment．

Together，they have the potential to become powerful profit builders for you．

To learn more about this shock－absorbing team，see your RCA Distributor．Or con－ tact RCA Distributor and Spe－ cial Products Division，Dept－ ford，NJ 08096－2088．

The pulses being injected into the circuit have a risetime of $2 \mu \mathrm{~s}$, last $15 \mu \mathrm{~s}$, and then take about 30 $\mu \mathrm{s}$ to decay. The PR41 has pushpull output circuitry so it can source or sink up to 100 mA , which is more than enough to drive any IC input-whether it's already being driven by an IC output, or even tied to one end of the supply rail through a resistor. And since the pulses are so short, the chances of doing any damage to the IC being pulsed are low.
Being able to trigger in-circuit logic transitions is a great aid in circuit debugging but, unless you're looking at unclocked inputs, it still doesn't give you a true picture of circuit operations. The people at Beckman understood that when they designed the PR41. The unit can put out pulses in sync with an external clock. There are three pins on the pulser - ground, clock in, and clock out. The pin labeled ext sync is an input that accepts a clock signal and then forces the unit to output pulses at the clock-signal's rate. The clock
pulses are isolated and cleaned up by an internal Schmitt trigger and appear at the pin labeled sQ.

There are two points to keep in mind if you want plan on using an external clock. If the clock you're feeding in has a frequency less than 400 Hz , the PR41 will put out pulses at the clock rate. If it sees a clock faster than 400 Hz , the output frequency isn't very easy to predict. The PR41 will lock to the input frequency and put out pulses at some indeterminate rate. The pulses will be synced to the incoming clock, but the maximum frequency will be 400 Hz . In other words, you'll be sure that every pulse the PR41 puts out coincides with an external clock pulse, but the output frequency won't be more than the pulser's maximum of 400 Hz .

The external clock input of the PR41 has an impedance of 1 megohm, so you can be confident that it will be invisible to just about any clock line you tap; there's very little chance of loading down your circuit. The pulser is extremely

easy to use and, since it's built around CMOS circuitry, it can operate over a wide range of supply voltages. Even CMOS, however, has outside limits and you should be careful to stay within them or you'll damage the probe. The clock pulses produced by the PR41 swing very close to the supply voltage so you should make sure the input you're testing can safely handle that voltage. If it can't, you'll have to use a resistive voltage divider or some other arrangement to cut the pulses down to a safe level.

Experience the wonder... of fischertechnik kits

Learn about:

Available at your Heath/ Zenith Computers \& Electronics Center. See your telephone white pages for the store nearest you. Or order from the Heathkit Catalog. To order by phone, call 1-800-253-0570.

ELENCO PRODUCTS AT DISCOUNT PRICES！

20 MHz DUAL TRACE OSCILLOSCOPE $\$ 369$ мо－1251

FREE
DIGITAL METER WITH SCOPE PURCHASE

35 MHz DUAL TRACE OSCILLOSCOPE $\$ 545$ мо－1252

Top quality scopes at a very reasonable price．Contains all the desirable features．Elenco＇s 2 year guarantee assures you of continuous service．Two 1x，10x probes，diagrams and manual included．Write for specifications．

GF－8016 Function Generator with Freq，Counter ${ }^{\text {s } 219}$
－Sine，Square，Triangle， －Pulse，Ramp， .2 to 2 MHz －Frequency ． 1 thru 10 MHz GF 8015 without Freq．Meter ${ }^{\text {s }} 169$

Triple Power Supply XP－660

$\$ 14950$
0－20V＠1A $0-20 \mathrm{~V}$＠1A 5 V ＠ 5 A
Fully Regulated，Short Circuit Protected with 2 Limit Cont． 3 Separate Supplies．

Fully regulated，short circut protected current limit control

3 Amp Power Supply XP－650

$\$ 11950$
$0-40 \mathrm{~V}$＠1．5A 0－20V＠3A

C\＆S SALES， 8744 W．North Ter．Niles，IL 60648
800－292－7711 \quad（312）459－9040 2 Year Limited Guarantee！Add 5\％for Postage（\＄10 max．），IL Res．，7\％Tax CIRCLE 109 ON FREE INFORMATION CARD

DIGITAL LCR METER

Model LC－1800
Measures：Inductors
Mapacitors，Resistors
Inductors $.1 \mu \mathrm{H}$ to 200 H Capacitor． 1 Pf to $200 \mu f$ Resistor $.01 \Omega$ to $20 \mathrm{M} \Omega$ Ranges 6 Ind， $7 \mathrm{cap}, 7$ res

Hear itAll!

R-5000

High performance receiver

THE high performance receiver is here from the leader in communications technology-the Kenwood R-5000. This all-band, all mode receiver has superior interference reduction circuits, and has been designed with the highest performance standards in mind. Listen to foreign music, news, and commentary. Tune in local police, fire, aircraft, weather, and other public service channels with the VC-20 VHF converter. All this excitement and more is yours with a Kenwood R-5000 receiver!

- Covers 100 kHz-30 MHz in 30 bands, with additional coverage from 108-174 MHz (with VC-20 converter installed).
- Superior dynamic range. Exclusive Kenwood DynaMix ${ }^{\text {tw }}$ system ensures an honest 102 dB dynamic range. ($14 \mathrm{MHz}, 500 \mathrm{~Hz}$ bandwidth, 50 kHz spacing.)

- 100 memory channels. Store mode, frequency, antenna selection.
- Voice synthesizer option.
- Computer control option.
- Extremely stable, dual digital VFOs. Accurate to $\pm 10 \mathrm{ppm}$ over a wide temperature range.
- Kenwood's superb interference reduction. Optional filters further enhance selectivity. Dual noise blankers built-in.
- Direct keyboard frequency entry.
$\mathbf{R}-\mathbf{2 0 0 0} 150 \mathrm{kHz}-30 \mathrm{MHz}$ in 30 bands
- All modes • Digital VFOs tune in 50 Hz ,

500 Hz , or 5 kHz steps $\bullet 10$ memory channels - Programmable scanning • Dual 24 -hour digital clocks, with timer $\bullet 3$ built-in IF filters (CW filter optional) • All mode squelch, noise blanker, RF attenuator, AGC switch, S meter • 100/120 $220 / 240$ VAC operation - Record, phone jacks - Muting terminals • VC-10 optional VHF converter ($108-174 \mathrm{MHz}$)

- Versatile programmable scanning, with center-stop tuning.
- Choice of either high or low impedance antenna connections.
- Kenwood non-volatile operating system. Lithium battery backs up memories; all functions remain intact even after lithium cell expires.
- Power supply built-in. Optional DCK-2 allows DC operation.
- Selectable AGC, RF attenuator, record and headphone jacks, dual 24-hour clocks with timer, muting terminals, 120/220/240 VAC operation.

Optional Accessories:

- VC-20 VHF converter for $108-174 \mathrm{MHz}$ operation • YK-88A 1.6 kHz AM filter - YK-88S 2.4 kHz SSB filter • YK-88SN 1.8 kHz narrow SSB filter • YK-88C 500 Hz CW filter - YK-88CN 270 Hz narrow filter - DCK-2 DC power cable - HS-5, HS-6, HS-7 headphones \bullet MB-430 mobile bracket - SP-430 external speaker \bullet VS-1 voice synthesizer • IF-232C/IC-10 computer interface.

More information on the R-5000 and R -2000 is available from Authorized Kenwood Dealers.

KENWOOD

TRIO-KENWOOD COMMUNICATIONS 1111 West Walnut Street Compton, California 90220

Simply because they can＇t read．

Functional illiteracy is a problem that now affects 1 out of 5 American adults．

You can change that by making a tax－deductible contribution to the Coalition for Literacy．Call us toll－free at 1－800－228－8813 and bill it directly to your credit card．

> Volunteer Against Illiteracy． The only degree you need is a degree of caring．

LETTERS

continued from page 14

BUILDING CRYSTAL SETS

I enjoyed Martin Clifford＇s arti－ cle，＂The Early Days of Radio，＂in the July 1986 Radio－Electronics．I have been building crystal sets as far back as I can remember．I would like to bring up a few things you missed，and make a sugges－ tion or two．

First，as I remember，and accord－ ing to the tradition that my father handed down to me，you could almost always get a better signal with a galena crystal and a cat＇s whisker than with a germanium di－ ode（1N34）．Also，the galena crystai and cat＇s whisker were never han－ dled．Any film or oil from your skin would impede operation．
Second，all of the between－com－ ponents wiring was done with ＂litz＂wire，which you never touched the pure copper ends of．I doubt that many experimenters knew about the skin effect，but litz wire was part of the tradition．
Third，you needed 2000 －ohm headphones．I have gotten results with lower－impedance head－ phones，but high－impedance headphones are a necessity for any degree of performance．
Fourth，you cannot overstress the importance of a good earth ground．The old cold－water pipe trick may suffice，but an eight－foot copper rod with a litz wire is really superior．

Then there are the little things． The wooden base，ideally，is made out of well－dried hardwood that is coated with several layers of var－ nish．The coil（s）are wound out of a medium－gauge pure copper wire with varnish insulation．Personally， I＇m fond of oatmeal boxes as coil forms．

One thing that you made no mention of is the World War 1 crys－ tal set．The heart of it was sup－ posedly a razor blade and a piece of pencil lead．I have tried to dupli－ cate that design with no luck but people tell me that it can be done． Perhaps you could offer some in－ sight into that piece of lore．

Thanks again for the article． MATTHEW KLEINMANN Binghamton，NY

R－E

Capacitance， logic and more． For less．

Now，a fully－loaded DMM combines a capacitance meter，logic probe，and an hFE meter，all for the price of a DMM．

TTL Logic Probe： 20 MHz $\mathrm{Hi} / \mathrm{lo} /$ off indications Detects 25 nS pulse width Capacitance： 5 ranges（ 2 nF to $20 \mu \mathrm{~F}$ ） hFE（NPN or PNP）： 1 range（1000） DMM：DCV－ 5 ranges（ 2 V to kVV ） ACV－ 5 ranges（ .2 V to 750 V ） DCA－ 4 ranges（ $200 \mu \mathrm{~A}$ to 10 A ） ACA－ 3 ranges（ 20 mA to 10 A ） Ohms－7 ranges（ 200 Ohms to 2000 Megohms） Continuity beeper Diode check Built－in bail Anti－skid pads
See one now at your local Beckman Industrial distributor．
DM25L．．．${ }^{58995}{ }^{*}$

Beckrpart Ifrofestria！
Beckman Industrial Corporation
A Subsidiary of Emerson Electric Company 630 Puente Street，Brea，CA 92621 （714）671－4800

D Copyright 1985 Beckman Industrial Corporation

CIE MAKES THE WORLDOF ELECTRONICS YOURS．

Today＇s world is the world of electronics． To be part of it，you need the right kind of training，the kind you get from Cleveland Institute of Electronics，the kind that can take you to a fast growing career in business，aerospace， medicine，science，government，communica－ tions，and more．

Specialized training．

You learn best from a specialist，and that＇s CIE． We＇re the leader in teaching electronics through independent study，we teach only electronics and we＇ve been doing it for over 50 years．You can put that experience to work for you just like more than 25,000 CIE students are currently doing all around the world．

Practical training．

You learn best with practical training，so CIE＇s Auto－Programmed ${ }^{\oplus}$ lessons are designed to take you step－by－step，principle－by－principle．You also get valuable hands－on experience at every stage with sophisticated electronics tools CIE－designed for teaching．Our 4K RAM Microprocessor Training Laboratory，for example，trains you to work with a broad range of computers in a way that working with a single，stock computer simply can＇t．

Personalized training．

You learn best with flexible training，so we let you choose from a broad range of courses．You start
with what you know，a little or a lot，and you go wherever you want，as far as you want．With CIE， you can even earn your Associate in Applied Science Degree in Electronics Engineering Technology．Of course，you set your own pace， and，if you ever have questions or problems，our instructors are only a toll－free phone call away．

The first step is yours．

To find out more，mail in the coupon below．Or，if you prefer，call toll－free 1－800－321－2155（in Ohio， 1－800－523－9109）．We＇ll send a copy of CIE＇s school catalog and a complete package of enroll－ ment information．For your convenience，we＇ll try to have a representative contact you to answer your questions．

Cleveland Institute of Electronics

 1776 East 17th St．．Cleveland，Ohio 44114YES！I want to get started．Send me my CIE school catalog including details about the Associate Degree Program．I am most interested in： \square computer repair $\quad \square$ television／high fidelity service
\square telecommunications
\square medical electronics
\square robotics／automation
\square broadcast engineering
\square other \qquad
Print Name \qquad

Address \qquad Apt． \qquad City＿＿State＿＿Zip＿＿＿

Age \qquad Area Code／Phone No
Check box for G．I．Bulletin on Educational Benefits
\square Veteran $\quad \square$ Active Duty MAIL TODAY！ $7=000=5$ （In Ohio，1－800－523－9109）

New Products

DMM, the model 4800, measures DC/AC voltage, DC/AC current, resistance, frequency (Channel A, 10 Hz to 100 kHz ; Channel B, 10 Hz to 1000 kHz), period, dBm, diode test, continuity test and temperature (with K-type thermocouple). Also included are comparator, data hold, peak hold, relative, and auto-ranging.

The large 5-digit LCD display indicates pushbutton-selected functions and low line voltage or overrange conditions. Both manual and auto ranging are provided. A relative measurement mode is available, which stores the applied input as a zero-reference point from which subsequent measurements will be displayed as deviations.

The comparative measurement mode permits input of high or low values as percentages, and a beeper sounds (and "GO" appears on the LCD) if the value being measured falls within the set limits. "Hi" or "Lo" will be displayed if the value is beyond the set limits. A

CIRCLE 18 ON FREE INFORMATION CARD
relay contact is provided for the external comparator output. A "key lock" function prevents all switches except power-off from being actuated.

Accessories include: power cable, spare fuses, signal cable, alligator test leads, and comprehensive instruction manual. Optional accessories include various K-type thermocouples, bench "hold" probe, and $10-a m p$ measurement probe.

The model 4800 is priced at \$600.00.-Triplett Corporation, One Triplett Drive, Bluffton, OH 45817.

SERVICE MONITOR, the model COM-3, is designed to analyze and test transceivers in the 100kHz to $1000-\mathrm{MHz}$ range, in $1-\mathrm{kHz}$ steps. It features a programmable microprocessor memory that

An easy-to use keyboard offers programmable offset keys that simplify frequency entry for duplex or repeater radios, and incre-mental-step keys facilitate the testing of a receiver throughout its frequency range.

The model COM-3 is portable and has a built-in, rechargeable battery pack that makes it ideal for off-site testing; the COM-3 weighs less than 10 lbs. For additional portability, a durable Cordura travel case with zippered pockets and shoulder strap is available.

The model COM-3 is priced at \$1995.00.-Ramsey Electronics Inc., 2575 Baird Road, Penfield, NY 14526.

IN-CIRCUIT IC TESTER, the Chip Checker model TTL-1 is a fullmode in-circuit IC tester with the capability of detecting and displaying IC errors during actual operating conditions; it can do so automatically.

It is designed to test most 14,16 , 18 , and 20 -pin TTL IC's, including low-power Schottky TTL. That includes logic gates, flip-flops, buffers, and interface elements. Newer and older logic families may also be tested.

Two front-panel-mounted switches are available for selecting the V_{CC} and GND pins on the IC under test. Lighted LED's indicate errors or differences between the IC under test and a reference IC.

CIRCLE 20 ON FREE INFORMATION CARD
The model TTL-1 can be used to troubleshoot suspect IC's on a PC board, because the IC's do not have to be removed from the board to be tested. Good IC's can be verified without soldering or causing board damage. The TTL-1 In-Circuit IC tester can be adapted for low-volume incoming inspection and screening of IC's, and it can also be used as an in-circuit logic monitor.

The model TTL- 1 is priced at $\$ 299.95$.-Microcraft Corporation, P. O. Box 513, Thiensville, WI 53092.

MARINE PACK is a submersible housing designed for use with a Sony Handycam 8 mm camcorder

INSTANT REBATES ON B\&K-PRECISION SCOPES Limited time offer-expires November. 30,1986

$3 K^{\text {Prectison }} 100 \mathrm{MHz}$, Quad Input Oscilloscope lodel 590A

- $1 \mathrm{mV} /$ divs sensitivity - Full Bandwidth
- 2\% Vertical and Horizontal Sweep Accuracy

- Calibrated Delayed Sweep
- 20 kV Accelerating Voltage
- V Mode - Displays Four Signals Unrelated in Frequency
- And Much More!!!

B\&K-Precision is offering these instant factory rebates on selected B\&K-Precision Oscilloscopes to you through Participating Distributors.

ERE'S HOW IT WORKS!!!

Call 1-800-654-7256 for the name of your Participating
B\&K-PRECISION Distributor
Select the B\&K-PRECISION Oscilloscope that meets your needs from the Participating Distributor's stock.
The Participating Distributor will deduct the "INSTANT REBATE" for that model directly from the invoice price. You save instantly!

PLEASE NOTE: This offer is available only at Participating B\&K-PRECISION Distributors. Only B\&K-PRECISION Models $2520,1590 \mathrm{~A}, 1570 \mathrm{~A}, 1564,1541$ and 1524 are eligible for INSTANT REBATES. Sorry, no substitutions are allowed. INSTANT REBATES apply to purchases from October 1, 1986 through November 30, 1986 only.

BIV PREGISION DYNASCAN

6460 West Cortland Street • Chicago, Illinois 60635 - 312/889-9087

Learn micro-processing with the new MICRO-PROFESSOR 1P

Students, engineers or techniciansupgrade your micro-processing skills with the new Micro-Professor 1P.

The MPF-1P features:

- extensive software support
- more built-in memory
- improved keyboard
- larger display

Three tutorial guides help cover all capabilities. The ideal training tool! MPF-1P will deliver you into the growing world of micro-processing. Invest now!

```
Plus-FREE GIFT Only $199.95
```

inside it. The Marine Pack can be submerged to a depth of almost 140 feet. Made of plastic and glass, it is sealed with special buckles and a rubber ring clamp system. Handycam camcorder functions that can be controlled from outside the housing.

The Marine Pack features a piezoelectric underwater microphone for audio pickup, and a wide conversion lens. The unit weighs about 8 pounds, including ballast weight, and measures 11.80

CIRCLE 21 ON FREE INFORMATION CARD
$\times 10.25 \times 10.45$ inches.
The Marine Pack is priced at $\$ 995.95$; with video light, $\$ 1400.95$. (The Handycam camcorder is sold separately.)-Sony Corporation of America, Sony Drive, Park Ridge, NJ 07656.

CELLULAR ANTENNA, the model CMR750, is designed to be mounted on a window inside a vehicle; no outside radial is needed. The design enables the antenna to operate with minimum signal loss or pattern distortion.

Installing the cellular antenna inside the vehicle lowers the possibility of theft and vandalism, and the antenna is protected from damage resulting from automatic car washes and harsh weather conditions. Although the model CMR750 is factory pretuned for the U. S. cellular band, a trimmer is provided for further adjustment. It comes complete with 12^{\prime} of RG58XM/U low-loss cable and all connectors.

The model CMR750 is priced at $\$ 72.95$.-Alliance Research Corporation, 20120 Plummer Street, P. O. Box 4029, Chatsworth, CA 91313.

DMM, the model DM-1000, has $31 / 2$ digits and a rotary switch. Designed for the professional engineer and technician, as well as for hobbyists and students, its features include: pocket-size, overload protection, 10A DC current readings, $0.5^{\prime \prime}$ LCD, and 200-hour battery life. The model DM-1000 incorporates 6 funtions in 17 ranges, including DCV, ACV, DCA, OHM , diode test, and battery test.

Ranges include 200 mV , 2/20/200/1000 volts DC; 200/750 volts $\mathrm{AC} ; 200 \mu \mathrm{~A}, 200 \mathrm{~mA}, 10 \mathrm{~A} D$;

CIRCLE 23 ON FREE INFORMATION CARD
200/2K/200K/2M ohms; diode test ($0-2 \mathrm{~K}$ ohms); battery test: 2 volts DC.

The model DM-1000 is priced at \$39.95.-A. W. Sperry Instruments, 245 Marcus Boulevard, Hauppage, NY 11788.

R－E Engineering Admart

CALL NOW AND RESERVE YOUR SPACE

－ $6 \times$ rate $\$ 800.00$ per each insertion．
－Reaches 239，312 readers．
－Fast reader service cycle．
－Short lead time for the placement of ads．

Call 516－293－3000 to reserve space．Ask for Arline Fishman．Limited number of pages available．Mail materials to：
Engineering Admart，RADIO－ELEC－ TRONICS，500－B Bi－County Blvd．，Farm－ ingdale，NY 11735.

A professional package enabling you to design，edit，print \＆plot electronic schematics．Supports＂A＂ through＂E＂size sheets，over 2000 Unique Library Parts，Part Rotation， Unlimited Hierarchy，Grids，Auto Panning， 5 Zoom Levels，Rubber－ banding，Powerful Macros，Hi－Res Color \＆Monchrome Graphics，Much More！\＄495 Includes Everything．
Call or Write for Free Demo Disk．
OrCAD Systems Corporation
1049 S．W．Baseline St．Suite 500 Hillsboro，OR 97123 （503）640－5007

LINEAR IC EQUIVALENTS \＆PIN CONNECTIONS

BP141－Shows equivalents \＆pin con－ nections of a popular user－oriented selection of European，American and Japanese liner IC．＇s 320 pages， 8×10 inches．$\$ 12.50$ Plus $\$ 2.75$ shipping． ELECTRONIC TECHNOLOGY TODAY INC．，PO Box 240，Massapequa Park， New York 11762－0240．

－ $6 \times$ rate $\$ 800.00$ per each insertion．
－Reaches 239，312 readers．
－Fast reader service cycle．
－Short lead time for the placement of ads．

Call 516－293－3000 to reserve space．Ask for Arline Fishman．Limited number of pages available．Mail materials to：
Engineering Admart，RADIO－ELEC－ TRONICS，500－B Bi－County Blvd．，Farm－ ingdale，NY 11735.

THYRISTOR TESTER，the model 20， is an easy－to－use instrument capa－ ble of measuring the basic DC pa－ rameters of thyristors and diodes． Important triggering charac－ teristics are obtained without guesswork，confusion，or com－ promise．Forward and reverse blocking voltage measurements are safely made with the peak max－ imum current limited to the pro－ grammed condition．Two－terminal devices，such as rectifiers and di－ odes，may be tested as well．

The model 20 can be connected to a variety of devices－other test equipment，handlers，printers，or

CIRCLE 24 ON FREE INFORMATION CARD computer systems－through its IEEE－488 interface．The interface is activated easily by pressing the ap－ propriate front－panel buttons．Bus commands emulate the front－pan－ el controls and have similar mnemonics．The tester is a stand－ alone unit；neither external power
supply nor curve tracer is needed．
The model 20 Thyristor Tester is priced at \＄1995．00．－Markenrich， 14946－A Shoemaker Avenue，Santa Fe Springs，CA 90670.

VACATION／HOME SENTRY，the model GD 1702 is a device that monitors internal house condi－ tions and relays that information over the telephone．

The easy－to－assemble unit auto－ matically detects low tem－ peratures，and can also be used to detect water，and other problems through the addition of various sensors．If any of the sensors de－

tect an abnormal condition, that fact is relayed to the homeowner via a beeping signal when he calls in.

The model GD-1702 easily plugs into a phone line, and operates on

CIRCLE 25 ON FREE INFORMATION CARD
two 9 -volt batteries, which are tapped only when relaying information in response to a phone call. It is priced at $\$ 29.95$.-Heath Company, Benton Harbor, MI 49022.

DIP IC DISPENSERS, the MDD series, are designed for MOS and CMOS as well as standard devices. The dispensers offer flexibility and convenience. Each channel easily accepts any standard IC shipping tube, and can accommodate any

CIRCLE 26 ON FREE INFORMATION CARD standard IC with 2 to 24 pins on $0.300,0.400$, or 0.600 centers. Adjustable guides position each IC individually for easy extraction, and simple gravity feed assures reliable deposit of each IC into extraction position after the previous IC is removed.

The MDD design ensures effective static dissipation (a grounding lug is included) as well as reliable performance. One-, five-, and tenchannel versions are available.

Dispensers are priced at $\$ 22.88$ (1); \$87.37 (5); and \$168.95 (10).Davle Tech Inc., 2-05 Banta Place, Fair Lawn, NJ 07410.

R-E

AN INTRODUCTION TO BASIC PROGRAMMING TECHNIQUES. This book is based on the author's own experience in learning BASIC and also in helping others, mostly beginners to programming, to understand the language. Included is a program library of programs that the author has actually written and run. Order your copy today. Send $\$ 5.00$ plus $\$ 2.65$ for shipping in the U.S. to Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 117620240.

DESCRAMBLE THE NEW VIDEO TAPE COPY PROTECTION SCHEME. When you rent or buy a recent movie release, stop the vertical jumping and jittering in your TV picture with the LINE ZAPPER. This project detects and removes selected lines of video that have been modified and often interfere with normal television operation. Get your kit today only $\$ 49.95$ plus $\$ 2.00$ for shipping and handling. ELEPHANT ELECTRONICS, Box 41865-L, Phoenix, AZ 85080. (602) 581-1973. MasterCard and Visa accepted. CIRCLE 120 ON FREE INFORMATION CARD

60 dB SIGNAL ELIMINATOR-for removal of undesirable TV/FM/VHF signals. Can be tuned precisely to ANY signal within these ranges: "Model 26 - Ch's. 2-6 plus FM (54-108 Mhz) "Model 1422 - Ch's. 14(A) - 22(1) ($120-174 \mathrm{Mhz}$) "Model 713 - Ch's. 7-13 (174-216 Mhz). Highly selective notch/adjustable strength. Singles $\$ 30$. Quantity discounts to 60%. STAR CIRCUITS - P.O. Box 8332 - Pembroke Pines, FL. 33084

CIRCLE 94 ON FREE INFORMATION CARD

SIMPLY SNAP THE WAT-50 MINIATURE FM TRANSMITTER on top of a 9 v battery and hear every sound in an entire house up to 1 mile away! Adjustable from $70-130 \mathrm{MHZ}$. Use with any FM radio. Complete kit $\$ 29.95+$ $\$ 1.50 \mathrm{~S}+\mathrm{H}$. Free shipping on 2 or more! COD add \$4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARD

FREE TOOL AND INSTRUMENT CATALOG packed with over 5,000 quality products for testing, repairing and assembling electronic equipment. A full selection of test instruments plus precision hand tools, tool cases, soldering equipment and much more. Products are shown in full color with detailed descriptions, pricing and a 100% satisfaction guarantee. CONTACT EAST, PO Box 786, No. Andover, MA 01845. Call (800)-225-5370 or in MA (617)-682-2000
CIRCLE 55 ON FREE INFORMATION CARD

SAFE-LEGAL-EFFECTIVE STUN GUN VIPER II. Instantly immobilizes an attacker up to 15 minutes. Penetrates through leather and thick clothing. Discharges $50,000 \mathrm{v}$ from a single 9 v NiCad battery. Used by police around the country. 1 Year Guarantee. 1 Viper II $\$ 39.95$. With NiCard battery and charger \$49.95. Free belt clip with every VIPER II. Catalog Free. United Imports \& Mfg., 6846 Pacific St. RE1, Omaha, NE 68106, (402) 554-0383, TLX: 5106016153, MC, VISA, C.O.D.

CIRCLE 199 ON FREE INFORMATION CARD

MICROWAVE ANTENNAS $\$ 69.95$. Now including shipping and Lifetime warranty. We Repair all types of Downconverters. Cable Converters and equipment available! Jerrold 400 wireless Convertor $\$ 72.95$ plus shippng. Coax cable, T.V. parts, accessories, connectors, T.V. amplifiers. Write for free catalog or call for prices. BLUE STAR IND., Dept. 105-RE12-86, 4712 Ave. N, Brooklyn, N.Y. 11234 (718) 338-8318 Ext. 105.
CIRCLE 85 ON FREE INFORMATION CARD

NEW JERROLD CS 68 CHANNEL CABLE TV CONVERTER with volume control \& descrambler loop (Port). Programmable clock turns TV on/off \& changes channel. Audio mute kills commercials. Programmable channel scan. Instant channel recall. Automatic fine tuning with manual override. Video \& audio outputs. Friendly to all descramblers. Specify output. 1 year warranty. $\$ 139 . \$ 118$ ea./case lot of 10 . Free delivery. Dealers wanted. 514-739-9328. CROSLEY ELECTRONICS, Box 840, Champlain, N.Y. 12919. CIRCLE 191 ON FREE INFORMATION CARD

ZENITH SSAVI, SALE $\$ 169$. UHF gated pulse $\$ 199$. Original reconditioned equipment for UHF channels $27,48,51$, etc. Quantity discounts. Satellite Systems; surplus $\mathrm{N}-12$, SB-3, Hamlin 1200. Converters, amplifiers, accessories. Catalog containing coupon \$1. SSAVI modification/troubleshooting handbook $\$ 6.50 \mathrm{ppd}$. AIS SATELLITE, INC., P.O. Box 1226-RE, Dublin, PA 18917. (215) 249-9411.
CIRCLE 81 ON FREE INFORMATION CARD

A CAREER START FOR THE 21ST CENTURY. Since 1905, National Technical Schools has helped people build successful careers. Enter the 21st Century through home study courses in Robotics, Computer Technology and Servicing, Microprocessors, Video Technology, Basic Electronics, Transportation Technology, Climate Control Technology or TV and Radio Servicing. For a FREE catalog, call 1-800-B-BETTER. Or write NTS/INDEPENDENT TRAINING GROUP, 456 West M. L. King Jr. Blvd. L.A., CA 90037.
CIRCLE 181 ON FREE INFORMATION CARD

THE MODEL WTT-20 IS ONLY THE SIZE OF A DIME, yet transmits both sides of a telephone conversation to any FM radio with crystal clarity. Telephone line powered - never needs a battery! Up to $1 / 4$ mile range. Adjustable from $70-130 \mathrm{MHZ}$. Complete kit $\mathbf{\$ 2 9 . 9 5}$ $+\$ 1.50 \mathrm{~S}+\mathrm{H}$. Free Shipping on 2 or more! COD add \$4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 241-2827.
CIRCLE 127 ON FREE INFORMATION CARD

"SODDER" WITH THE NEW BUTANE POWERED PORTASOL. No matter how you spell it Portasol is the handiest soldering iron around. Seven inches long. Variable power: 10 to 60 watts. 60 minutes use per refill. Only $29.95+2.00 \mathrm{P}$ H. Replacement tips: 1.2, 2.4 (standard), $3.2,4.8 \mathrm{~mm}, 7.50+.50$. Butane: $\mathbf{3 . 5 0}+\mathbf{. 5 0}$. VA add 4% tax. Quantity discounts/dealers invited. Visa/MC orders: (703) 323-8000. Mail Ck/Money-order to: PORTASOL, 4358 Harvester Farm Lane, Fairfax, VA 22032.
CIRCLE 190 ON FREE INFORMATION CARD

MODULAR PROBE FITS ALL SCOPES - Save up to fifty percent \bullet Instant repair - no soldering • Satisfaction guaranteed • 250 MHz 10X Attenuation • Model M12X10 ... \$62 with readout ... $\$ 68$ Free accessories catalog. For immediate service call: 800-368-5719 outside Calif. 800-643-8382 in Calif. TEST PROBES, INC., P.O. Box 2113, La Jolla, California 92038.
CIRCLE 123 ON FREE INFORMATION CARD

CALL NOW AND RESERVE YOUR SPACE

- $6 \times$ rate $\$ 745.00$ per each insertion
- Reaches 239,312 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additional charge.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS, RADIO-ELECTRONICS, 500B Bi -County Blvd., Farmingdale, NY 11735.

CABLE TV CONVERTERS AND DESCRAMBLERS. Large selection of top quality merchandise. Low prices. Quantity discounts. We ship COD. Most orders are shipped within 24 hrs . Send $\$ 2.00$ for catalog. CABLETRONICS UNLIMITED, P.O. Box 266 Dept. R, S. Weymouth, MA 02190 (617) 843-5191
CIRCLE 186 ON FREE INFORMATION CARD

KEY TO THE FUTURE MICROLAB I by MASTERTECH. A Digital Electronics Course (with working laboratory). Forty lab experiments, comprehensive instructional manual, includes layout techniques, digital logic circuits, flip flops, counters, shift registers, data handling logic-Appendix includes, logic IC's, manufacturers specification sheets. Completely assembled, no other equipment or parts necessary. Price \$249.00- $\$ 15.00$ shipping/handling, MASTERTECH LABORATORIES INC., 302 Royal Trust Building, 612 View Street, Victoria, British Columbia, Canada, V8W 1J5, Telephone No. (604) 388-6631
CIRCLE 200 ON FREE INFORMATION CARD

TV STEREO ADAPTER KIT-For the price of a pre-recorded video tape, you and your family can enjoy dynamic stereo sound. Easily connects between your TV/VCR and your stereo system. Also contains a quality Stereo Simulator for non-stereo programming. Available in kit form $\$ 47.95$ or assembled $\$ 67.95$. DEL-PHONE INDUSTRIES INC. Box 150, Elmont NY 11003. NY Residence add Sales Tax. (718) 468-7367.

CIRCLE 56 ON FREE INFORMATION CARD

103 PROJECTS FOR ELECTRONICS EXPERIMENTERS. Soft cover; 308 pages of practical, proven plans for the electronics hobbyist...circuits, converters, amplifiers, synthesizers, optoelectronics, power supplies and more. Written and designed by Forrest M. Mims, III. 1249 I $\mathbf{\$ 1 1 . 5 0}$ plus $\$ 2.65$ postage in USA. ELECTRONIC TECHNOLOGY TODAY INC., PO Box 240, Massapequa Park, NY 11762-0240.

Computers on the WORKBENCH

The personal computer does some surprising things in the electronics lab these days．Find out what and how right here．

ROBERT GROSSBLATT，CIRCUITS EDITOR

THERE ARE AS MANY APPROACHES TO ELECTRONIC DESIGN AS there are designers．Each one has his own way of going from initial idea to final circuit．Of course，it takes a combination of both experience and creativity to produce working circuit－ ry．But no matter how you arrive at a design，success often depends on the tools you use．Scopes，multimeters，function generators，capacitance meters－all those（and many more） are invaluable when you＇re working on a circuit．The prob－ lem is that the more tools you have，the less space you have on your workbench．

One solution to the space problem is to use a multi－purpose test instrument．If you browse through the ads，you＇ll find that many different test－instrument combinations are avail－ able．For example，many DMM＇s now come with built－in frequency counters；and they can measure capacitance and
transistor gain，too．Some top－of－the－line scopes even have built－in multimeters．Now the trend to combine various pieces of equipment has been carried over to personal com－ puters as well．More and more companies are producing hardware add－ons for computers so they can be used as bench instruments．

Before we talk about what sort of computer－based instru－ ments are available，it＇s important to understand what advan－ tages there are to using them．As a general rule，computer add－ons are much more expensive than traditional stand－ alone instruments－but they have features that may simply be unavailable on traditional instruments．

For starters，since a computer is（or becomes）an integral part of the instrument，you get data storage and program－ mability for nothing．This means that the instrument can run

in an unattended mode, take periodic readings, and store them on a disk. You can find that feature on top-of-the-line stand-alone instruments, but you'll pay a top-of-the-line price for them as well.

There's another bonus to using a personal computer as the brains of a test instrument: flexibility. Everyone who has ever used a traditional test instrument has had the experience of not being able to perform some essential test. The desired test could be anything from measuring capacitance on a multimeter to doing distortion analysis with a VU meter. Upgrading a standard instrument, if possible at all, is a hardware hassle; but with a com-puter-based instrument it may be just a matter of upgrading the software.

Another point is accuracy. As with standard instruments, you can get com-puter-based instruments with as much accuracy as you want. The number of significant figures is a function of the add-on hardware, not the computer. In fact, the front end of a stand-alone instrument may be very similar to that of a computer-based instrument. The differences between the two come further downstream: LCD display circuits vs. bus-interface circuitry.
There's one BIG problem with comput-er-based instruments: Not all instruments work on all computers. Designing a computer peripheral is an expensive, timeconsuming business. When you open the box and plug it into your computer, you're using a product that represents many manhours of labor. As a result, the more sophisticated the instrument, the more com-puter-specific it's going to be.

The instruments we'll talk about here are no exception. If you are interested in a particular instrument, but own a non-supported computer, check with either the manufacturer, a local user's group, or both, for information on a device that is compatible with your hardware. Don't run out and spend your money on anything until you're certain that it will work on your machine.

The IBM DMM?

A multimeter is probably the most basic instrument that you can have on a bench. No matter what you're working on, the chances are that you'll use your multimeter often. The Virtual Instrument Corporation (73 Redding Road, Georgetown, CT 06829) has introduced a computer-based instrument for the IBM that not only works as a multimeter, but gives you a full-featured function generator and universal counter/timer as well. Its specs are shown in Table 1.

As with any other computer instrument, the Virtual Cat is a two-part system. The hardware, shown surrounding the IBM PC in Fig. 1, takes the input signal, processes it, and converts it into data that can be passed to the second half of the system-the software controlling the

TABLE 1-VIRTUAL CAT SPECIFICATIONS
41/2-digit autoranging multimeter
Volts (AC \& DC) $\quad 200 \mathrm{mV}$ to 200 V in 4 ranges
Amps (AC \& DC) $\quad 2 \mathrm{~mA}$ to 2 A in 4 ranges
Resistance
Decibels
Accuracy
Isolation
200 ohms to 20 Megohms in 6 ranges
-30 to +48 dB
$\pm 0.05 \%$
600 V to ground
Counter, timer, frequency meter
Frequency
Inputs: Channel A
Channel B
Period
Time interval
Maximum count
Resolution
10 Hz to 100 MHz
10 Hz to 100 MHz
10 Hz to 10 MHz
$0.5 \mu \mathrm{~s}$ to 10 s
250 ns to 10 s
100 MHz
100 ns
Function generator
Waveforms
Frequency range
Resoltuion
Accuracy
Amplitude
Sweep range
Price
Basic unit
Sine, square, triangle
0.01 Hz to 10 MHz
$\pm 10 \%$
$\pm 4 \%$
0.5 to 20 V
0.1 to 1000 sweeps/sec
\$1995

FIG. 1-THE VIRTUAL CAT puts a rack of test instruments inside an IBM PC.

FIG. 2-SCREEN DISPLAY of the Virtual CAT: the hardware/software combination provides a function generator, a universal counter, and a digital multimeter.
computer. The hardware for the Virtual Cat consists of a card for the IBM and a box that's used to connect the probes. Since the unit plugs into an expansion slot, it gets its power from the computer. That reduces on-board parts, and results in production savings.

The noise circulating in a personal computer can be a problem for many boards, and it can be a major problem for the Virtual Cat. The reason is that there
are several high-gain amplifiers on the board that are perfectly capable of amplifying noise as well as legitimate signal. The problem is solved, or at least considerably reduced, by housing the card in a metal shield. As you can see from the details in Table 1, the system's specifications are as good as the better stand-alone units.

As shown in Fig. 2, the software puts a sexy display up on the graphics screen that resembles a rack-mounted three-instrument set. That's a clever way to display the data, because it cuts the learning curve way down. Either a mouse or the keyboard can be used to move the cursor to any of the switches and change the settings. Doing so seems a bit strange at first, but after a while it becomes second nature.

You can use the Virtual Cat as a stan-dard-instrument set, but the real strength of the product is its ability to be programmed. It's possible to write BASIC programs that control the operation of any of the three modules in the instrument. A simple program will cause the Virtual Cat to take measurements and record the information on a disk. Not only that, but the files can be loaded into a spreadsheet or database manager for later analysis. Each of the individual measurements will be time- and date-stamped, so you can get an annotated listing of circuit behavior.

If you plan on using the programmable feature of the Virtual Cat, there is a highlevel language package available that gives you much more control over the instrument than you have from BASIC. For most applications, however, the

BASIC package will probably be more than adequate．You can load and save in－ strument setups，and program it to work in an unattended mode．Virtual Instruments plans to add more instruments to the basic package；by the time you read this there should be a digital scope，an IEEE－488 interface module，and a relay switch．

Computer scope

If you＇re in the market for a scope and you own a computer，you should seriously consider a computer scope．They＇re more expensive than stand－alone units，but they give you lots of goodies for the money．RC Electronics（5386－D Hollister Ave．，Santa Barbara，CA 93111）makes various de－ vices that work in Apples and IBM＇s，and Heathkit（Benton Harbor，MI 49022） makes two different models for the IBM． All units from both companies are hard－ ware／software combinations that use the graphics capability of the computer to dis－ play a scope screen on the monitor．

FIG．3－RC＇S IBM COMPUTERSCOPE provides 16 input channels；all interface circuitry fits on a standard IBM expansion card．

The hardware component of the RC Computerscope is a plug－in card and a front panel．The Apple scope is a two－ board set，but，as shown in Fig．3，there is enough room on the larger IBM board to mount everything on a single card．The spec sheets reveal that there is a consid－ erable difference in performance between the two versions of the scope．The IBM scope is much more powerful，has a larger bandwidth，more input channels，and so on．The Apple scope comes in two ver－ sions；the difference between them is in the A／D converter used．The APL－D2 uses an 8 －bit tracking A／D converter with a worst－case conversion time that provides a bandwidth of 100 kHz ．In practice， bandwidth depends on the shape and am－ plitude of the signal．Some signals will cause the APL－D2 to fall apart at frequen－ cies less than 100 kHz ，but others will be measurable up to 1 MHz ．

The APL－HR14 is based on a 14 －bit A／ D converter designed as a combination of tracking and flash converters to provide it with 14－bit accuracy up to a worst－case frequency of 500 kHz ．As with the APL－ D2，the upper frequency limit depends on the characteristics of the signal being measured．

TABLE 2－RC COMPUTER SCOPE SPECIFICATIONS

Parameter	APL－D2	APLHR－14	IBM	Units
Number of channels	2	4	16	
Vertical sensitivity	$0.3-9$	$1-10$	$0.200-10$	volts
Vertical accuracy	1	0.1	0.1	$\%$
Vertical impedance	44	1000	20	k ohm
Frequency response	100	50	250	kHz
Maximum vertical input	± 9	± 9	± 10	volts
Timebase	3.3×10^{-9}	2×10^{-9}	1.0×10^{-10}	sec
	3.5	-1	-99	datapoint
Sampling rate	3.5	0.5	1	MHz
Accuracy	0.1	0.1	0.1	$\%$
Price	$\$ 985$	$\$ 1195$	$\$ 2495$	

TABLE 3－HEATH SCOPE SPECIFICATIONS

Number of channels		2	
Vertical sensitivity		5 mV to $5 \mathrm{~V} / \mathrm{div}$	
Vertical accuracy		5\％	
Vertical impedance		1 megohm	
Frequency response		DC to 50 MHz	
Maximum vertical input		125 V	
Time base		500μ s to 20 s／div	
Sampling rate		100 kHz	
Accuracy		5\％	
Price	Kit		Assembled
SD－4802	\＄399．95		\＄575
SD－4850	\＄499．95		

TABLE 4－SYSTEM ONE SPECIFICATION

Frequency Generator	
Frequency range	10 Hz to 204.775 kHz
Resolution	0.005%
Maximum output	$30 \mathrm{dBm}(600 \mathrm{ohms})$
Accuracy	0.1 dB at 1 kHz
Flatness	$0.05 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz$)$
Maximum distortion	0.01%
Analyzer Module	0 to 140 V rms
Input range	0.1 dB at 1 kHz
Accuracy	0.1%
Resolution	$0.05 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz$)$
Flatness	-114 dBu
Noise	
Distortion Module	10 Hz to $100+\mathrm{kHz}$
Frequency Range	0 to 100%
THD Range	10 mV
Minimum Input	0.5 dB
Accuracy	0.1%
Resolution	
Price	$\$ 5475$
Basic unit，	
single channel，	
B modules	

The IS－16 and IS－16AT are RC＇s IBM scopes．The former is made to work in the XT and the latter is designed for the AT． Both are built around high－speed 12－bit converters with $1-\mathrm{MHz}$ sampling rates． The Nyquist criterion indicates that you need a sampling rate that is at least twice the frequency of the measured signal in order to obtain meaningful results．RC claims only 250 kHz as the bandwidth．In practice the limit will vary for the same reason that it does with the Apple ver－ sions．Specifications for all versions are shown in Table 2.

All versions of the RC scopes offer digital storage，programmability，and a minimum of two－channel，triggered oper－ ation．The APL－HR14 has an optional four－channel upgrade，and the IBM ver－ sions can handle as many as sixteen chan－ nels．All scope controls are set by command keys on the keyboard，and switching from one mode to another is very simple．
The resolution of the displayed signals depends on the computer．The IBM screen presents a much better image than the Apple screen，but any part of the signal
can be examined in greater detail by expanding the scale. Sample screen and printer output is shown in Fig. 4.

Since the RC units are storage scopes, you can save their signals on disk, and load them for analysis at your leisure. Once you use a storage scope it's really hard to go back to a non-storage type.

You just know that computer instrumentation is where things are going if Heath is getting into it. They have two scopes, both of which are available either in kit or assembled form. Both scopes convert an IBM-PC compatible computer to a $50-\mathrm{MHz}$ storage oscilloscope; one, the 4850 , will also talk to an older standalone scope and convert it for use as the display of a $50-\mathrm{MHz}$ storage scope. Consequently, the 4850 (shown as this story's lead photo) has a slew of front-panel controls that determine how it works when you use it as a smart front end for a regular scope.

FIG. 4-THE IBM VERSION of RC's Computerscope provides both screen and hard-copy output.

The 4850 , and its less expensive counterpart, the 4802, are stand-alone boxes that output serial data to your computer on a standard RS-232 line. The specs for both units are shown in Table 3. The serial interface lets you forget about computergenerated noise, but it also puts an extra box on your workbench. The Heath scopes put their display on a standard IBM CGA (Color Graphics Adapter) card and are dual-trace triggered oscilloscopes. The current settings, as well as the keyboard command options, are always displayed on the screen, so it doesn't take long to get comfortable with changing parameters and operating the instrument.

Waveforms can be frozen, stored on disk, and then recalled for examination later. One nice feature of the Heath scopes is that you can display two stored waveforms on the screen and simultaneously view a live dual-trace representation of the input signal. Since the stored waveforms are shown using the currently-set timebase and vertical-sensitivity settings, a real comparison can be made with the live traces. You can use any print utilities, including the PrtSc (Print Screen) key, to get a hardcopy image of the displayed waveforms.

The scope's operating software is writ-
ten in BASIC, and a compiled version of the program is what actually drives the system. The disk also contains the uncompiled version of the program, so that if you're into programming, you can customize the operation of the scope to fit any application you have in mind. And since the scopes deliver data via the RS-232 port, you can talk to the instrument via modem and do remote signal measurements. Heath supplies the necessary software on the disk that comes with the scope.

Stand-alone storage scopes are coming down in price, but even the most expensive ones don't have all the features you get on a computer-based scope. Both Heath instruments are reasonably priced when you add up all the goodies you get.

Computerized audio testing

Computer-based test instruments aren't limited to standard bench meters. Several companies make high-quality products designed for special markets. Audio Precision (P. O. Box 2209, Beaverton, OR 97075) is a small company that produces a set of instruments specifically designed for audio analysis. Their IBM system consists of a short-slot plug-in board as well as a set of external rack-mount boxes. The measuring hardware is external because of noise in the IBM. A DB- 25 on the rear of the plug-in card allows the internal and external hardware to communicate. Specifications are shown in Table 4.

Although Audio Precision uses a DB-25 connector, communications between the two parts of the hardware are not done serially. As we mentioned earlier, when doing A/D conversion, the sampling rate must be at least twice the frequency of the signal being measured, depending on the accuracy you want. The lower limit is twice the measured frequency, but the upper limit is set by the designer, circuit costs, etc.

Audio Precision's System One was designed with no compromises in mind, and its performance specs are as good as, if not better than, many stand-alone instruments. The sampling rate is so high that it would require a rate of about 40 kilobaud on a standard RS-232 channel. As a result, the system uses a parallel interface. The rack (i. e., the external hardware) contains the notch and bandpass filters used for various kinds of analysis, as well as the generators for producing various test tones.

The System One is a computer-based instrument, so the rack and the device under test are controlled via software. To take a simple example: If after connecting the hardware you want to test to the rack, the rest of the test procedure is done from the computer's keyboard. Software is loaded and the instrument panel is selected from a menu that appears at the bottom of the screen. The output of the
frequency generator can be set on the left, and the measured data will be shown in the center. The present analyzer settings are also displayed in the center panel. You can change frequency, phase, bandwidth, and so on with a few keystrokes, and immediately see the results of those changes on the computer's screen.

The real advantage of the System One is the fact that it's being run on a computer. Not only can any of the test results be graphed, but the software lets you define the coordinates, scaling, signal source, and other parameters. And, like the com-puter-based scopes, test results and setups can be saved in disk files.

System One also allows unattended testing. In addition, a text editor can be called from the menu to let you write test procedures in an English-like language. Once you're familiar with the syntax, you can link several tests together and have them run sequentially at specified times. Procedures can have conditional statements in them, so you can run unattended tests with as much nested conditional branching as you need. You can also specify limits in any test or procedure. And since a procedure can call in as many previously-saved test and limit files as you want, the System One is flexible enough to do even the most complicated sort of audio testing automatically.

The basic Audio Precision hardware does a wide range of audio testing, but its utility can be increased with optional extras. The extra hardware allows you to measure several kinds of IM distortion and wow and flutter; the addition of a switcher will let several devices be connected to the system at the same time.

Sceptre III

Even major semiconductor manufacturers are recognizing the power available on today's personal computers. GouldAMI (3800 Homestead Road, Santa Clara, CA 95051) has a system available for the IBM that aids the design of gate arrays and other IC's. The Sceptre III is a graphics-oriented package that allows OEM's to design and debug gate arrays. When the design is complete, you send the disk to AMI where its data is used to build an actual IC.

Conclusions

The computer-based instruments we've discussed are only the tip of the iceberg. There are many others, and more are showing up every day. In general, they're more expensive than their stand-alone counterparts, but you get much for your money. And as for IC-design software, it's interesting to note that several semiconductor companies have software packages that run on VAX workstations. But few have awakened to the incredible power waiting inside the very same box used for blasting aliens with a joystick. R-E

Computer-AIDED ELECTRONICS Design

High-powered design tools now run on personal computers; those tools eliminate much of the drudge work of design, increase productivity, and are fun to use!

ROBERT GROSSBLATT, CIRCUITS EDITOR

WHEN PERSONAL COMPUTERS STARTED TO SHOW UP IN THE late 1970's, the two most important qualifications for buying one were a healthy amount of both cash and curiosity. Even a basic machine cost a great deal of money, and there wasn't much software available. As a matter of fact, you could do little more than enter simple programs via front-panel switches, and read data on front-panel LED's. Not the most exciting way to spend a rainy evening.

Fortunately, the capability of the personal computer has increased dramatically in the ten or so years since it first appeared. As things stand now, the gap between the mainframe and the PC is narrowing rapidly. New silicon superstars such as the 68020 and the 80386 can address gigabytes of memory, run as fast as 25 Mhz , and do real multi-tasking. What that means is that, within a few years, about the only thing you'll need a mainframe for is operating NORAD-and who wants to do that in the living room?

As PC hardware gets more and more sophisticated, so does the software that runs on it. For example, the primitive graphics programs of a few years back have matured into sophisticated CAD packages with features specifically designed for particular applications-architecture, mechanical engineering, and, of course, electronics.

The number-crunching power of the typical PC has been used to eliminate the brain damage and tedium usually associated with a whole range of design activities. And nowhere is that more evident than in electronics design. As things stand now, a modest investment in software will not only save you countless hours of bench-time and breadboarding, but will also allow you to do waveform analysis and troubleshooting without ever touching a component!

There are many types of computers and many types of software; but there are also, unfortunately, no standards. A disk containing software for one computer is unusable on

TABLE 1-PROGRAMS AND PRICES

	Apple II	Macintosh	IBM-PC	HP-150
Microcap	$\$ 475$	-	$\$ 475$	$\$ 475$
Microcap II	-	$\$ 895$	$\$ 895$	$\$ 895$
Micrologic	$\$ 450$	-	$\$ 450$	$\$ 450$
DADiSP (1)	-	-	$\$ 795$	-
Modeler	-	(2)	-	-

Notes: 1. DADiSP is available for a number of computers. Contact the manufacturer for details.
2. Contact the manufacturer for current licensing information.

FIG. 1-THIS VOLTAGE REGULATOR was drawn by Microcap; the numbered nodes represent points where signal analysis can be done.
another. Some of the software we'll be describing is available for several different machines, but much of it runs on one and only one computer. Table 1 shows which of the programs that we'll discuss are presently available for which computers, but check with the manufacturers-new versions of hardware and software are announced from time to time.

1986-style design

In the past, the first thing you might do when you had an idea for a new circuit was to sit down with paper and pencil and start drawing circuits. Now you can use a computer for brainstorming; doing so gives you several advantages. For example, many general-purpose graphics programs will let you draw pictures on the screen, save them to disk, edit them, and print them. However, a few programs take things a step farther. Micrologic and Microcap from Spectrum Software (1021 S. Wolfe Road, Department F, Sunnyvale, CA 94087) work together to allow you to draw a circuit on the screen and then analyze it by looking at the waveform generated at any node in the circuit.

Although the look and the program flow of both Microcap and Micrologic are similar, Microcap deals with analog circuits, and Micrologic deals with digital
circuits. If you're familiar with one program, you'll have no trouble using the other.

Software simulation of a circuit is an easy way to check a design without risking turning silicon into scrap. And, given the complexity of those programs, the learning curve is surprisingly short. Circuit data can be entered graphically or by generating a netlist that describes the components and how they're connected.

A separate part of the program lets you define the characteristics of each of the components you'll be using. Doing so allows you to specify things like transistor gain, op-amp slew rate, logic-element truth tables, and so on. Then, after you've defined the operating characteristics of your components, you can lay out the circuit using the graphics editor. The last step is to analyze the circuit.

Example output

Figure 1 is a voltage regulator that was drawn with Microcap. The symbols used in that drawing come from a standard library that is supplied with the program.

Adding components to the drawing is a simple matter of moving the cursor to the desired position and then telling the program that you want to add a part. You'll be asked for the type of part, its orientation,
and other parameters. As soon as the software knows exactly what you want, it will draw the component on the screen.

If you're going to use a sub-section of a circuit more than once, you can save a great deal of time by building a circuit macro, analogous to a spreadsheet macro. The resistor network shown in Fig. 2, for example, could be converted to a macro and used in other drawings simply by loading it from disk.
Because a macro is a shorthand way of including a pre-drawn circuit in a new design, an additional step must be followed when the macro is defined. After the macro is complete, you must label the points in it that will connect to the circuit using it. (It's much easier to do than to describe.) In Fig. 2, we labeled four points ($\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D) and saved the drawing to disk. Then we could add it to another drawing just as we would add any component.
To insert a macro, move the cursor to the point in the circuit where you want the macro to appear, and then use the same keystrokes as in adding any other component. The result can be inserted as many times as you want. Macros not only simplify circuit creation, but they also make it easier to understand the drawing.
Figure 3 shows the drawing of a simple RLC circuit that is driven by a pulsed voltage source. By doing a transient analysis on the circuit, Microcap processes the drawing and comes up with a netlist similar to the one shown in Table 2. Microcap shows you the parameters used for the analysis and lets you change them, if desired. Then Microcap does the circuit

FIG. 2-THIS RESISTOR NETWORK is a "macro" circuit that can be inserted into another circuit as if it were a single component.

FIG. 3-THIS SIMPLE RLC NETWORK is driven by a pulsed voltage source; the pulse parameters can be defined independently.

FIG. 4-THE UPPER WAVEFORM shows the output of the pulse source in Fig. 3; the lower waveform shows the waveform at the right edge of the coil (node 2).
math and graphically presents you with the results, as shown in Fig. 4. The top curve is the voltage waveform at node 1 (the output of the squarewave generator), and the bottom curve is the waveform generated at node 2 .
In addition to transient analysis, Microcap can also do AC, DC, and Fourier analysis. Micrologic can do similar things with digital circuitry. Without going into detail, both the schematic (Fig. 5-a) and the timing diagrams (Fig. 5-b) are typical of what Micrologic can do for you.

Circuit-design spreadsheet

The real usefulness of Microcap and Micrologic is their ability to analyze the drawings they produce. There are more powerful graphics-only programs, but, as far as electronics is concerned, being able to simulate real-world circuit operation is much more important than generating pretty artwork.
Spreadsheets let you manipulate financial data and play "what if" games. Micrologic and Microcap let you examine the operation of a circuit without ever
touching a single piece of silicon. However, it takes much time and many keystrokes to analyze a circuit, change a few things, and then analyze it again. More than that, there's just no way to do a side-by-side comparison of several versions of a circuit. However, within the past year or so, software has become available that gives you the flexibility of a spreadsheet for doing that type of circuit analysis.

For example, DADiSP (Data Acquisition and Digital Signal Processing) is a piece of software from DSP Systems (1 Kendall Square, Cambridge, MA 02139) that gives circuit designers the same power that Lotus 123 gives to accountants. It's a scientifically oriented spreadsheet whose cells display graphs rather than numbers. DADiSP has more than 150 different scientific functions built in, so entering the formula for a particular waveform is relatively painless.
Let's suppose that you've designed a circuit and have collected data by operating the circuit with a range of different input signals, time constants, and so on. Once you've entered your data in a file, it can be loaded into one of the spreadsheet cells and the program will display the data in graphic form. See Fig. 6. DADiSP will let you perform a number of different analyses, as well as manipulate any of the graphs displayed on the worksheet. Available functions range from simple signal arithmetic to complex calculations that use trig and calculus.

One strength of the program is its ability to refer to one window as a variable. For example, as shown in Fig. 7, you can see the result of a point-by-point multiplication of two signals (which are displayed in windows 1 and 2) by moving the cursor to a third window and entering the formula W2 - W1. Then you can integrate the output of the third window, and display it in a fourth. That sort of analysis and

FIG. 6-A SPREADSHEET FOR ELECTRONICS DESIGNERS, DADISP converts a circuit's operating parameters into graphic form and displays it in one of 64 cells. The software allows you to perform a wide variety of analyses and to manipulate the graph displayed in any of the cells. Mathematical operations ranging from simple arithmetic to complex calculations can be performed on the data.

FIG. 7-THE DADISP SPREADSHEET lets you relate cells and derive results by combining those cells in various ways. Windows 1 and 2 show two independent signals; Window 3 shows their product; and Window 4 shows the integration of Window 3.
editing can be done with any of the program's built-in functions and arguments.

DADiSP is a 64 -cell spreadsheet; the graphs contained in each cell can be interrelated. That means that changing the data in one cell will change the data in any related cells. Playing "what if" using those capabilities can enable you to finetune a complex analog circuit without physically changing a single component in the actual circuit

One of the program's neatest features is its ability to graph the measured points and then interpolate the plot. DADiSP lets you look solely at a plot of your data, or at a curve that represents the best fit. After the program fits a curve to your data, you can activate a cursor that moves along the the curve and shows you the interpolated coordinates. For example, if you've plotted voltage versus time, DADiSP will give you interpolated values of voltage as you sweep the cursor across the time scale.

That type of interpolation can be a real time-saver when you do some kinds of analog circuit design. Imagine, for example, designing an oscillator or a filter circuit and calculating the values for the RC components. Doing the math isn't difficult, but attaining a specific frequency using standard-value parts can be exasperating. A good deal of that type of brain damage can be eliminated with DADiSP by plotting a graph of the circuit's timeconstant formula and then running the cursor along the result. As you move the cursor, the relevant RC values will show up at the bottom of the screen.

Other useful features include the ability to expand and compress the displays and automatically take care of scaling. Those features are important when you want to examine just a small part of a curve or look at an expanded time scale.

DADiSP isn't for everyone. It's an expensive piece of software, and it's only useful for some kinds of design and some kinds of designers. If you decide on component values by plugging things in and crossing your fingers, you won't get much use from the program. But for designers who do a lot of calculating and reading before ordering parts, DADiSP can be tremendously helpful.

DADiSP is like any other sophisticated analytical tool: the more it's used, the more useful it becomes. If your circuit designs are heavily math intensive, the software may be well worth the investment in time and money you'll have to make. The program goes a long way toward helping you visualize the effects of varying circuit parameters and making sense out of real-world data.

Bose's Modeler

The number-crunching and graphics capabilities of computers are slowly being put to use to solve problems in just about every area of electronic design. Paper-
work and guesswork are being replaced by software and keystrokes. One field that is just starting to benefit from the use of the computer is acoustic design. Setting up a successful sound system in a large room has traditionally been the result of a combination of physical measurements, past experience, speaker dynamics, and a great deal of personal bias.

Before any attempt can be made to decide on the installation for a particular room, an enormous amount of data must be collected. Room dimensions and construction details, architectural features, reflectivity, and speaker characteristics are only a few of the specifications that must be known before design work can begin. Even then the math is time-consuming and must be re-done if any of the data changes.

The Bose Corporation has recently introduced acoustic design software called Modeler that simplifies data entry and uses extensive graphics to display an acoustic model of the room. The designer
uses the program's graphics front end to create a set of planes that define the room, and then he specifies the physical material of each of the planes.

Next the computer builds a three-dimensional model of the room, taking account of the degree of sound absorbency and reflectivity of all surfaces. The model is displayed on-screen; it can be rotated around any of the three axes and redrawn to show the view from any angle. Figure $8-a$ shows a three-dimensional view of a room. You can see how the model was defined by building a series of planes. The location of any point in the room can be found because the plane dimensions and elevations were entered into the program while the room was being drawn on the screen.

The locations of the speaker clusters are entered by putting the cursor at the desired point and indicating which way they point. Since we're dealing with a three-dimensional model, the speaker direction is specified by entering three fig-

-GREELEY 6.5

Date: 9/1/86 SeriaiNo: 0 Dimensions: Feet							
Speaker	Cluster	Height	Roll ${ }^{\circ}$	Pitch ${ }^{\circ}$	Yaw ${ }^{\circ}$	Power(\%)	Time(mS)
BOSE ST802 1 ktz	A	8.0	0.0	22.0	0.0	0.0	0
BOSE ST802 1 kHz	B	8.0	0.0	22.0	0.0	0.0	0
BOSE 8021 kHz	C	16.0	0.0	28.0	0.0	400.0	0
BOSE 102--1 kHz	D	9.0	0.0	50.0	0.0	25.0	37
BOSE 102--1 kHz	E	9.0	0.0	50.0	0.0	25.0	37
BOSE 102-1 kHz	F	9.0	0.0	50.0	0.0	25.0	37

FIG. 8-BOSE'S MODELER lets you do acoustic design on the screen of your computer. The threedimensional model of a room shown in a is defined by building a series of planes. As shown in b, speaker direction is defined by pitch, roll, and yaw parameters.
ures to represent pitch, roll, and yaw. See Fig. 8- b. The speaker's characteristics are contained in data files, so all that the designer must do is to tell the program what kind of speakers will be used.
After the speaker data has been entered, the computer has everything it needs to calculate and display any of the standard acoustic parameters at any point in the room. Those parameters include both direct and reflected components, time delay, relative loudness, and so on. If a change is made in any of the architectural features or speaker characteristics, the program will recalculate the parameters as necessary.
Being able to spot-check the acoustic parameters at any point in a room is nice, but the sexiest feature of the Bose software is its ability to draw an acoustic map of the room. It does that by calculating the sound-pressure level at every point in the room; it then displays the results using varying shades of gray to represent different acoustic levels.
The resulting gray-scale map gives the designer a graphic representation of the sound level anywhere in the room. That lets him spot areas that need reinforcement or muting, all without installing any hardware.

Modeler provides the acoustic designer with a diagnostic tool that is as powerful in its field as are the other software packages we discussed earlier in theirs. In this case the computer has given the designer capabilities that were unheard of as few as five years ago. The result is greater accuracy, lower design cost, and increased productivity.

Conclusions

The growth of sophisticated hardware and software for the personal computer has been unbelievably rapid since the days of the Altair and the Imsai (the mid-1970's). It's a bit of a mind-bender to realize that some of the things routinely done on personal computers today weren't possible even on mainframes ten years ago.

And there's no end in sight. Even those of us that only like to fool around on the weekend can use computerized tools on a PC to reduce the donkey work of electronics design.

The software we've discussed here is only the tip of the iceberg. Many more products are available and just about every area of electronics, from designing IC's to laying out printed-circuit boards, has benefited from the popularity of the personal computer. If you find yourself spending a great deal of time at the workbench, there's a good chance that your work can be made much easier by using a computer. And you don't need a mainframe to enjoy the benefits that sophisticated design circuitry can produce. Besides, you can't play Pacman on a mainframe.

R-E

THE BIG ONE FINALLY CAME THIS AUthor's way: a job providing both financial reward and a fascinating challenge for his company, Vesta Technology. The project: To design a robot, including a control computer, an arm, and additional subsystems for motion control, navigation, and operator input/output. While designing the robot, we discovered much about the personal robot industry. For one, it appears to be dominated by expensive robots with limited capabilities. We felt that a new approach could make a home robot more affordable and more exciting.

Designing a robot requires expertise in a number of areas, including mechanics, electronics, and computer hardware and software. In order to augment Vesta's limited abilities in the field of mechanical engineering, we enlisted Stock Drive Products to aid our development effort. That company is the major supplier of mechanical components to the industrial robotics market. See the Sources box for their address.

The cost of a robot

Stop for a moment and consider why personal robots are so expensive. One rea-
son is that a considerable markup takes place at each point in the distribution chain. A manufacturer's purchasing department must have a secure supply of parts, so it may be willing to pay higher prices to attain that security. The hobbyist, however, has the advantage of being able to buy from less-expensive sources of parts. He can, for example, take advantage of surplus outlets, thereby eliminating middlemen; the result is a substantial savings over manufacturers' prices.

As for the controller, we designed a complete low-cost single-board computer that is highly compatible with the IBM-PC. Our approach emphasizes the use of flexible electronics that allow you to customize your robot with available mechanical parts.

By providing the electronic-control system and minimizing mechanical costs, we believe that building a personal robot can be both entertaining and affordable. In the upcoming series of articles, we will show you how you can adapt our designs to your problems.

The main components of our system are the single-board development system, a control/sensing board, and control software. Because the electronics systems are efficient and adaptable, you are free to interface them with whatever mechanical system meets your needs. The systems
software that we have developed (and are still developing) is quite sophisticated, but the applications programming is left to you.
The bottom line is that we are not offering a kit for the type of ready-to-assemble robot that so many other companies offer; rather, we are suggesting that you can build the robot that you really want or need by integrating our control system with your mechanical design.

Overview

As we discuss the specifications of the R-E Robot, keep in mind that you can build your robot with other components, and in other configurations.

Our robot is powered by two 12 -volt lead-acid batteries; it has a top speed of five miles per hour. Although we used utility batteries, we could have used auto or motorcycle batteries. Circuitry that indicates when power is low is included onboard, as is a 117 -volt AC battery charger.

The robot's drive system consists of two independent 10.5 -inch pneumatic tires that are connected to two toothed belt drives and to two $1 / 20$-horsepower DC torque motors. A caster mounted at the rear provides lateral stability and ease of movement.

The robot is equipped with sensors for measuring temperature, light, and sound.

FIG．1－R－E＇S PERSONAL ROBOT has a unique mechanical configuration．This artist＇s conception shows the overall structure of our prototype．The robot can be modified to suit just about any application．

Microswitch collision detectors and sonar ranging，usable at distances as great as 20 feet，are also provided．

The robot lacks a traditional robot arm． Instead，it features a powerful gripper that rides a vertical track at the front of the unit．The arm，as shown in Fig．1，some－ what resembles an industrial forklift． While some flexibility is sacrificed using that approach，some important advan－ tages are gained．For one thing，the me－ chanical design is greatly simplified．That means that greater lifting capacity could be provided without greatly increasing cost．The gripper is capable of vertical travel from floor level to about table height．

In addition，the robot has options for an RF link，a speech synthesizer，and even a speech－recognition system．

The RPC

The hardware that makes it all possible is the RPC（Robotic Personal Computer）． The heart of the RPC is a highly integrated Intel 80188 microprocessor；it signifi－
cantly reduces costs by including－in the IC package－many support devices that are external to the 8088 （used in a true－ blue IBM－PC）．The entire computer oc－ cupies a PC board that is less than eight inches on a side．

The interface between the RPC and the I／O unit is an adaptation of the IBM－PC bus．Signals from that bus are available at a 60 －conductor IDC connector．That bus allows prototype circuits to be built with－ out using special prototype cards．

Control boards

The RPC controls three custom boards． Board 1，shown in Fig．2，contains most of the basic control circuits；with it and the RPC，the robot is capable of unsupervised operation．Board 1 controls the two torque （drive）motors．Each PWM（Pulse－Width Modulation）drive－motor controller can deliver as much as 500 watts per wheel．A feedback encoder allows the RPC to keep track of speed and position．Torque load is also monitored．

Other Board－1 functions include grip－
per－motor control，and control of the so－ nar ranging system．Based on the Texas Instruments and Polaroid sonar systems， the ranging system can be used for colli－ sion avoidance，navigation，and security． Board 1 also contains several mis－ cellaneous systems，including the battery charger，the DC－DC converter，and a beeper alarm．The environmental sensing systems（temperature，light，and sound detectors）are also on Board 1．Last，the collision detector outputs are processed on that board．

The robot differs from many projects presented in Radio－Electronics in that it is an evolving project．Many of its circuits are still in the design or testing phase．As a result，some of the final details may differ from those presented here．The other two control boards fall into the still－being－de－ signed category．As of now，Board 2 will contain the speech synthesis and recogni－ tion hardware，and that Board 3 will house the RF data link．

Software

Complementing the hardware is a flexi－ ble programming environment that allows the programmer to choose his favorite and most productive language．The RPC may be programmed in two different ways．
One approach involves use of either of the onboard languages：BASIC and FORTH．Each language is a combination operating system，development system， and high－level language．Each includes debugging support，inherent ROMability， and access to mass storage，and each sup－ ports interrupt programming，integrated procedures，and multitasking．An on－ board EPROM programmer allows soft－ ware to be written，tested，and burned into EPROM for dedicated use．

The other approach makes use of the RPC＇s IBM－PC compatibility．The RPC boots most operating systems designed for the $P C$ ，thereby allowing the program－ mer to choose his favorite language．As－ sembler，Fortran，Pascal，C，BASIC， Compiled BASIC，and many others are all available．Programs in those languages can also be burned into ROM，if the com－ piler used generates ROMable code．Pro－ gram code can also remain stored in battery backed－up static RAM for power－ on execution．In addition，programs and data can also be stored on floppy disks． The RPC can accommodate any mixture of as many as four 3．5－and 5.25 －inch floppy－disk drives．

RCL

Although the robot＇s software is not yet as extensive as we would like，modules have been written to test each of the robot＇s capabilities．The next step is an extremely sophisticated Robotic Control

SOURCES

Can you imagine what a robot we could build with a staff of 250,000 (the entire readership of Radio-Electronics)? One key to the success of the R-E Robot is the collective development capability of that readership. In an effort to encourage the exchange of programs, sources of parts, hardware enhancements, and any other items of general interest, Radio-Electronics, Stock Drive Products, and Vesta Technology are each offering special support.

Radio-Electronics will open a special section of its new remote bulletin board system (RE-BBS) to builders of the R-E robot. You can reach the bulletin board by calling 516-293-2283.
Stock Drive Products (55 S . Denton Ave., New Hyde Park, NY 11040 516-3280200) has agreed to supply a kit of parts for the drive sub-system, including two $10-$ inch pulleys and two 2-inch pulleys. Part number 2Z6-RL11862 is available for $\$ 32.00$.
To simplify the mechanical aspects of building a robot, Vesta will sell, for a limited time, an aluminum chassis (resembling the one in Fig. 1) at cost, approximately $\$ 45$. The fully-populated RPC will be available for $\$ 294$, including 16 K of RAM and the FORTH operating system. The Board-1 PC board is available as a bare board for $\$ 41$, or fully assembled for $\$ 289$. All source code for testing the robot and implementing RCL is available on a 5.25 -inch disk for $\$ 2.00$. All Vesta products are covered by a 15 -day return policy. MasterCard or Visa accepted; no purchase orders or terms available. Please add $\$ 8.00$ for shipping and handling for the computer board. Vesta Technology, Inc., 7100 W. 44th Avenue, Suite 101, Wheatridge, CO 80033, 303-422-8088.
Additional sources for various parts and sub-systems will be listed in future installments of this article.

Language (RCL). The inclusion of RCL on-board is possible only because of the power of the RPC.

The onboard RCL puts our robot a step ahead of almost all other home robots. Most robots are controlled with obscure software commands. A typical motion function could be programmed as follows:

OUT (1,1): REM Turn on drive motors
DELAY 1000:REM For one second
OUT (1,0): REM Then turn off motors RCL allows the operator to program the same function as:

10 FEET FORWARD
Choosing a language in which to implement RCL was not an easy task. Because RCL was to be interpreted, we had to implement it in a language that executes quickly. To ease development and to allow people to customize RCL for their own purposes, it had to be written in a high-level language. We also wanted to minimize the cost of the hardware required for developing the RCL interpreter.

TABLE 1-
SPECIFICATIONS COMPARISON

	RB-5X Robot	HERO 2000	R-E Robot
Dimensions	$13^{\prime \prime}$ diameter $\times 23^{\prime \prime}$ high	$16.5^{\prime \prime}$ wide $\times 22.5^{\prime \prime}$ long $\times 32.4^{\prime \prime}$ high	$\begin{aligned} & 19^{\prime \prime} \text { long } \times 18^{\prime \prime} \text { wide } \\ & \times 20^{\prime \prime} \text { high } \end{aligned}$
Weight	24 pounds with arm	78 pounds with arm	55 pounds with arm
Speed	.23 mph	1 mph	5 mph
Arm	4 axes and gripper	4 axes and gripper	1 axis and gripper
	12 oz payload	16 oz payload	10 pound payload
	1 "/second	$6^{\prime \prime} /$ second tactile feedback	$8^{\prime \prime} /$ second
Language	Tiny BASIC	Interpreted BASIC with specialized robotic commands	Mutlitasking FORTH with user alteraable Robot Control Language (RCL) overlay
Subsystems	Two RS-232 ports	Two RS-232 ports	Two RS-232 ports
	$81 / \mathrm{O}$ lines	Cassette 1/O	Disk drives (4)
	Sonar system	Sonar system	Sonar system
	8 perimeter bumper panels	Environmental sensing	Environmental sensing
	Speech synthesis	Speech synthesis	Speech synthesis
		Motor speed control Real-time clock	Motor speed control Real-time clock
		Keyboard/LCD	Collection sensor
Sleep Mode	No	Up to 6 days	Months
Battery	$\begin{aligned} & 6 \mathrm{VDC} \\ & 90 \mathrm{WH} \\ & \text { Sealed } \end{aligned}$	$\begin{aligned} & 12 \mathrm{VDC} \\ & 288 \mathrm{WH} \\ & \text { Sealed } \end{aligned}$	$\begin{aligned} & 2 \times 12 \mathrm{VDC} \\ & 480 \mathrm{WH} \end{aligned}$
Operator	Terminal	Teach pendant	Terminal
Interface		Keyboard with special function keys and keypad LCD on robot	Direct or remote connection
Remote Control	None	RF link, 100 ' range built in to teach pendant	RF link attaches to user supplied RF transceivers
Microprocessor	8073, 4 MHz	$8088,5 \mathrm{MHz}$	$80188,8 \mathrm{MHz}$
Mass Storage	2 K ROM	Cassette tape, disk optional in future	Disk, optional
Memory	$8 \mathrm{~K} / 16 \mathrm{~K}$ RAM 2K ROM	$24 \mathrm{~K} / 576 \mathrm{~K}$ RAM 64 K ROM	16K/768K 48K ROM
Bus	None	Proprietary 12 slot back plane, based on S-100	Modified IBM "PC" bus using flex cable and simple "ROBUS" expansion bus
Wheels	$2^{\prime \prime}$ casters $4^{\prime \prime}$ solid wheels	$3^{\prime \prime}$ casters 6 " solid wheels	$5^{\prime \prime}$ casters $10.5^{\prime \prime}$ pneumatic tires.
Cost (Basic unit)	\$2,500 assembled	$\begin{aligned} & \$ 2,500 \\ & \text { kit } \end{aligned}$	$\$ 850$ components

After considering BASIC, C, FORTH, and Pascal, we decided that FORTH met our requirements best. It runs much faster than interpreted BASIC, but it allows interactive program development, testing, and debugging. In addition, that language promotes the writing of modular, struc-
tured programs (as do Pascal and C), but it does not require a disk-based development system.

Another benefit is that FORTH is extensible, which means that the code we write becomes a part of FORTH. Because most continued on page 94

WILLIAM SHEETS and RUDOLF F．GRAF

Part 6during the past few months we＇ve been looking at some of the principles behind television－signal encoding and decoding． Now it＇s time to put some of what we＇ve learned to work．Beginning this month， we will look at three practical de－ scrambler circuits that will decode sine－ wave－，gated－sync－pulse－，and outband－ sync－encoded signals．Complete sche－ matics，parts lists，and PC patterns will be provided；in addition，a kit of parts will be available．

But before we begin，take heed of this warning：

The decoding circuits that will be presented are for educational or experi－ mental purposes only．It may be illegal to use the circuits to decode encrypted signals before obtaining prior permis－ sion from the programming supplier．It is up to the user to determine the condi－ tions for legal use of these circuits and to obtain any permission required．

Sinewave scrambling

As discussed in the June 1986 issue of Radio－Electronics，in sinewave scram－ bling a $15.75-\mathrm{kHz}$ sinewave is added to the video signal．If the sinewave is syn－ chronized to the video signal，the sine－ wave＇s negative peaks occur during the video sync＇s positive peaks．The result is that the peak level of the sync is sup－ pressed below that of the video．See Fig．

1．That suppression confuses the sync sep－ arator circuit in a television receiver and stops it from functioning properly．The picture that results is unwatchable：There is a dark vertical band and the video is color－distorted．

The audio may or may not be scrambled．Actually，it＇s not really scrambled；instead，it＇s stripped away from the main audio channel and placed on a hidden subcarrier．In sinewave scrambling，that subcarrier usually is lo－ cated at 62.5 kHz ．

Sinewave descrambling

Unscrambling a sinewave－encoded sig－ nal is relatively simple．It involves mixing the scrambled signal with a sinewave of

FIG．1－A SINEWAVE－ENCODED VIDEO SIG－ NAL．The peak sync is suppressed below the level of the video，confusing the TV set＇s sync－ separator circuitry．
the same amplitude and frequency as the scrambling sinewave，but shifted 180 de－ grees．The result is that the scrambling sinewave is canceled，leaving a standard video signal．A block diagram of an ap－ propriate descrambler is shown in Fig． 2.

Leaving theory behind，let＇s look at a practical sinewave descrambler circuit． The bulk of the circuit is shown in Fig． 3. The input and output circuitry is shown in Fig．4；that circuitry is mounted within a shielded＂interface＂box．We＇ll speak more about the box and why it is used when we look at how to install and align the decoder．

The first thing a sinewave descrambler must do is to extract the 15.75 kHz sine－ wave from the incoming signal．That can be done by filtering it directly from the video envelope after detection．

An IF and video－detector system is formed by Q1，IC1，and their associated circuitry．The output of the TV set＇s tuner is picked off and fed to that stage via the input／output circuitry．Resistor R1 is used to set the gain of the IF stage while Cl is a DC－blocking capacitor．Resistor R1 should be set so that the input to Q1 is on the order of 1 millivolt．That signal level is provided by most cable systems，but with the value shown for R1，the circuit can accommodate signal levels from $300 \mu \mathrm{~V}$ to 5 mV ．

Transistor Q1 is configured as a single－ tuned bandpass amplifier with a gain of

FIG. 2-THE STEPS REQUIRED TO DESCRAMBLE a sinewave-encoded signal are shown here. For more on the theory of sinewave scrambling and descrambling, see the June and August 1986 issues of Radio-Electronics.
about $15-20 \mathrm{~dB}$. It is biased so that the collector current is about 3 mA . A bandpass network and matching transformer is formed by the circuit of L1, C3, and C4. The output of that circuit, at the junction of C3 and C4, is fed to pin 7 of IC1, the video detector. That IC is tuned by the L2. C6 circuit to accept either a Channel 3 or a Channel 4 input.

A $200-\mathrm{mV}$ composite-video signal ap-
pears at the output of ICl , pin 4, and is fed to a narrowband active filter formed by IC2-a, R9, R10, C8, and C9. That filter extracts the $15.75-\mathrm{kHz}$ decoding sinewave. The sinewave appears at the output of IC2-a, pin 1. That sinewave is shifted 180° by a sinewave-phasing network connected to the non-inverting input, pin 3, of IC2-a. That network consists of R12, R13, and C10. The passband of the filter
can be adjusted using R10. However, altering the setting of R10 will not alter the bandwidth of the filter, as that potentiometer also adjusts the Q of the filter. The nominal gain of the active filter is 20 dB . That gain can be altered by adjusting R14.

The output of the filter is coupled via C12 to a bias network consisting of R15 and R16. That network is used to set the DC level on D1, an MPN3404 PIN diode located within the interface box; see Fig. 4. That diode acts as a voltage-variable resistor. A positive-going voltage will cause the impedance of the diode to decrease; a negative-going voltage will cause the impedance of the diode to increase. An isolation network made up of L3 and R17 keeps the input RF isolated from the output sinewave. Capacitors Cl 5 and C14 pass the RF signal but block the output sinewave. Therefore, to the RF input, D1 appears to be effectively across the input (from tuner) and output (to TV

FIG. 3-A COMPLETE SINEWAVE DESCRAMBLER. Easy to build, and relatively easy to align, this circuit completely removes the $15.75-\mathrm{kHz}$ scrambling sinewave.

FIG．4－THE INPUT／OUTPUT CIRCUITRY is mounted in a separate，shielded enclosure．That allows for greater flexibility in installing the cir－ cuit in a TV－set．
network located between pins 9 and 10 ． The inductor，L2，should be tuned for maximum signal at pin 12．While 62.5 kHz is the most common audio subcarrier frequency，with the values shown virtually all other possible subcarrier frequencies can be tuned by adjusting L2．

The pin－12 output is filtered to extract the audio subcarrier and that signal is fed to the input（pin 2）of IC4，an NE565 PLL．The VCO control voltage appears at pin 7．Assuming that the PLL is in a locked condition，that voltage will corre－ spond to the program audio．For more detailed information on PLL operation， see Part 4 of this series in the September 1986 issue of Radio－Electronics．

FIG．5－USE THIS PARTS－PLACEMENT DIAGRAM when building the descrambler．The board may be etched using the pattern found in PC Service or ordered from the supplier listed in the Parts List．

IF）terminals and acting as a lossy shunt． By biasing the diode correctly，the de－ scrambling sinewave can be mixed with the scrambled video，cancelling the scrambling sinewave．The result is a de－ scrambled video signal that is fed back to the TV IF stage via capacitor C14 ．

Descrambling audio

In sinewave scrambling，the program－ mer also has the option of encrypting the audio．For systems where the audio is scrambled，IC3，IC4，IC5，and their asso－ ciated circuitry are used to recover the audio．If it is not needed，that part of the circuit may be omitted．

Part of the video signal at the output of ICl is picked off and fed to IC3，an MC1358 TV－sound IF amplifier via a high－pass filter made up of C7，R7，and R18．That versatile IC provides $4.5-\mathrm{MHz}$ detection，amplification，and limiting． The detector stage is tuned by the LC

The pin－7 signal is then filtered and coupled to an audio amplifier built around IC5．The output of the amplifier is fed to an external 8 －ohm speaker．Volume is controlled via R31．A stabilizing network for the LM386，consisting of R32 and C 33 ，is included to prevent the possibility of undesired high－frequency oscillation．

Building a descrambler

Most of the circuitry is mounted on a single PC board．The foil pattern for that board is found in PC Service．The parts－ placement diagram is shown in Fig． 5 and a photograph is shown in Fig． 6.

Other than R31，the volume control，the only components not located on the board are those that make up the interface circuit of Fig．4．Those parts should be mounted in a small shielded（metal）box．The cir－ cuit is simple and its placement within the box is not critical．Strictly speaking，the interface circuitry could have been located

PARTS LIST

All resistors $1 / 4$ watt， 10% unless noted R1，R10－ 1000 ohms，trimmer potentiom－ eter
R2，R8，R22，R24，R25－4700 ohms
R3，R18－470 ohms
R4，R7－ 100 ohms
R5，R19，R33－47 ohms
R6－3300 ohms
R9，R12，R13，R20，R23－ 10,000 ohms
R11－220，000 ohms
R14，R16－ 5000 ohms，trimmer potenti－ ometer
R15，R21－2200 ohms
R17，R27，R28，R29，R30－1000 ohms
R26－25，000 ohms，trimmer potentiome－ ter
R31－ 10,000 ohms，potentiometer，audio taper
R32－10 ohms
R33－ 1,000 ohms

Capacitors

C1，C2，C5，C7，C13－C15，C21－C23，C26， C36－470 pF，ceramic disc
C3－ 15 pF ，NPO or silver mica
C4－47 pF，NPO or silver mica
C6－56 pF，NPO or silver mica
C8，C9－0．001 $\mu \mathrm{F}$ ，Mylar
C10－C12－ $1 \mu \mathrm{~F}, 20$ volts，electrolytic
C16，C24，C27－C29，C35－0．01 $\mu \mathrm{F}$ ，ce－ ramic disc
C17，C30，C33－ $0.1 \mu \mathrm{~F}$ ，Mylar
C18－ $68 \mathrm{pF}, \mathrm{NPO}$ or silver mica
C19－12 pF，NPO or silver mica
C20－220 pF，NPO or silver mica
$\mathrm{C} 25, \mathrm{C} 31-10 \mu \mathrm{~F}, 20$ volts，electrolytic
C32－470 $\mu \mathrm{F}, 20$ volts，electrolytic
C34－470 pF，NPO or silver mica

Semiconductors

IC1－MC1330 video detector
IC2－LM1458 dual op－amp
IC3－MC1358 TV sound IF amplifier
IC4－NE565 PLL
IC5－LM386 audio amplifier
Q1－2N3563 NPN transistor
D1－MPN3404 PIN diode
D2－1N4002 rectifier diode

Other components

$\mathrm{L} 1-0.3-0.5 \mu \mathrm{H}$ ，see text
L2－0．2－0．3 $\mu \mathrm{H}$ ，see text
L3－ $5.6 \mu \mathrm{H}$ choke
L4－10－33 $\mu \mathrm{H}$（North Country Radio
LX10－33 or equivalent），see text
J1－J3－phono jacks
SPKR1－8－ohm speaker
Miscellaneous： PC board，metal box for interface circuit，cabinet（optional），wire， solder，shielded cable，etc．
The following are available from North Country Radio，P．O．Box 53，Wykagyl Station，New Rochelle，NY 10804：Com－ plete sinewave decoder kit，including PC board（metal box for interface cir－ cuit not included），item SW－1，\＄52．95 plus $\$ 2.50$ shipping and handling； Pulse decoder kit，including PC board， item PD－1，$\$ 49.95$ plus $\$ 2.50$ shipping and handling；Outband decoder kit，in－ cluding PC board，item OB－1，\＄34．95 plus $\$ 2.50$ shipping and handling．All three kits may be purchased for $\$ 129.95$ plus $\$ 3.50$ shipping and han－ dling．The LX10－33 coil（L4 of the sine－ wave descrambler）is available for $\$ 4.00$ ．NY state residents please in－ clude sales tax．
on the main board; but separating it from the main board allows for much more flexibility.

With our scheme, you can mount the interface box within the TV cabinet, physically close to the tuner and IF sections, but leave the remainder of the circuit outside for easier adjustments. Input and output signals are routed between the box and the board using shielded cables. With other schemes, either the whole circuit is mounted within the TV cabinet, making access difficult, or long signal runs are required, inevitably causing signal degradation.

Coils L1 and L2 are hand-wound. Coil L1 consists of 10 turns of number 22 enameled wire wound on an 8-32 screw. Coil L2 consists of 6 to 7 turns of number 22 enameled wire wound on an 8-32 screw. Once those coils are wound, remove the screws and replace them with ferrite slugs. You can salvage those slugs from an old TV set (from a coil in the IF circuit) or the front end of an old FM radio. Coil L4 is a custom part. It is designated as LX10-33 and is available only from the source given in the Parts List.

Aligning the circuit

It may be illegal to use or even align the circuit with the signal from an over-the-air or cable pay-TV programmer without obtaining prior permission. Do not use the circuit in that manner without first obtaining such permission.

In the meantime, it is possible to align the circuit "off-the-air." Doing that can give you greater insight into the way that signal descrambling works. Let's see what equipment is needed to perform such off-the-air alignment before looking at the procedure itself.

The circuit should be powered using a well-regulated, filtered +12 -volt DC supply. Any excess ripple can interfere with circuit operation to the point where alignment is not possible.

You will also need an oscilloscope. It should have a bandwidth of at least 5 MHz and preferably 15 MHz , and a sensitivity of at least $100-\mathrm{mV} / \mathrm{div}$. The scope should be equipped with a low-capacitance (less than 10 pF) probe.

You will need some way to simulate the $15.75-\mathrm{kHz}$ scrambling sinewave. That can be done using an AF generator. Your VCR will suffice as a source of normal (descrambled) video. If one is available, a signal generator capable of outputting frequencies to about 70 MHz would be helpful, but it is not absolutely required and you can get away without one.

Connect J1 to J2 using a short length of shielded cable. Then connect power and apply a video signal to the signal-input jack (J3). Nothing should run hot. If it does, measure the resistance between the power supply and ground rails. If it is less than 100 ohms, you likely have a short

FIG.6-THE COMPLETED SINEWAVE DESCRAMBLER BOARD contains everything except the volume control and the circuitry shown in Fig. 4.
somewhere. Correct any problems before proceeding.

Next, connect the oscilloscope probe to pin 4 of IC1. Adjust the settings of Ll and L2 for a maximum video signal display on the scope. Then adjust R1 for a video signal of about $250-\mathrm{mV}$ p-p.

Move the scope probe to pin 12 of IC3 Adjust L4 for maximum audio signal as displayed on the scope.

Disconnect the video source. Set the signal generator to output either a 61.25 MHz (Channel 3) or $67.25-\mathrm{MHz}$ (Channel 4) signal. Modulate that signal (30% modulation) with a $15.75-\mathrm{kHz}, 1$ millivolt $\mathrm{p}-\mathrm{p}$ signal from the AF generator, and apply it to J3. Connect the scope probe to pin 1 of IC2-a and adjust R10 for maximum sinewave display.

If you do not have a signal generator, place a 1-megohm resistor in series with the AF generator and set the generator to output a $15.75-\mathrm{kHz}$, 1 -volt p-p sinewave. Inject the signal at the junction of R9 and R10. Connect the oscilloscope probe to pin 1 of IC2-a and peak R10 for a maximum display.

Remove the sinewave signal. Replace the series 1 -megohm resistor with a 0.01 $\mu \mathrm{F}$ capacitor and couple the signal generator's output to the junction of C24 and R24. Set the generator's output to a $61.5-$ $\mathrm{kHz}, 300-\mathrm{mV}$ p-p signal. Connect the scope to pin 7 of IC4. Adjust R27 so that phase lock occurs. You'll know that you have phase lock when you obtain a rocksteady DC display on the scope. Once you have phase lock, try varying the output frequency of the AF generator. The voltage at pin 7 should track those changes over a range of a few kHz .

That completes the essential checkout procedures. If you have a signal generator, there is one final test you can perform. Once again, modulate a 61.25 - or 67.25 MHz signal with a $15.75-\mathrm{kHz}$ sinewave from an AF generator. Apply the resulting signal to J3.

Connect a TV receiver to J4, the signal output jack. Normally, applying just the video carrier to the set will cause a uniform white raster. However, the sinewave should cause a rippling effect. If the circuit is working properly, you should be able to eliminate that ripple by adjusting R16, R10, and R14. If you can, it proves that the circuitry is capable of suppressing the scrambling sinewave.

That completes alignment. If you obtain permission to use the circuit with an over-the-air or cable signal, you will likely need to tweak up performance when the circuit is installed. However, those adjustments should be minor.

Installing the circuit is relatively simple. However working inside a TV can be very dangerous unless you are sure what you are doing. We urge you to be cautious. Basically, the sinewave decoder interface box is installed between the TV's tuner and it's IF section. Coaxial cable should be used, and you should provide a bypass switch to take the decoder out of the circuit. You may prefer to use a separate tuner as decoder's front end. Then the only connection required is to the TV's IF. Either way will work, but using a separate tuner may be more desirable.

Next time, we will look at gated-sync and outband-sync descrambling circuits that you can build yourself and experiment with.

Closed-Caption Decoder

J. DANIEL GIFFORD

Last month we looked at the theory and the circuitry behind the
closed-caption decoder. Now let's build one.

Part 2WHEN WE FINISHED UP last time, we discussed the basics of how closed captioning works, and we presented the complete schematic diagrams of our closed-caption decoder. Now you can warm up your soldering iron-we're ready to build the circuit.

Construction

Building the decoder is fairly easy because it has only a single IC, and because all components, except the switches and power jack J1, mount on the PC board.

The NCI telecaption module, the heart of the decoder, mounts in the bottom of the case, and the PC board mounts in the top. The close quarters in the case require that all components on the PC board be low-profile types with heights less than one inch. The only problem component is the 7805 regulator, which requires a relatively large heatsink. We solved the problem by installing a vertical-mount heatsink horizontally.

To begin construction, first inspect the PC board (whether you make your own or buy the kit) for plugged holes and broken or shorted traces. Fix any and all faults before proceeding.

Following the component-placement diagram in Fig. 7, install the three jumpers using 22-gauge bus wire. Keep the jumpers tight and flat against the surface of the board to prevent shorts. Next, insert 26 PC pins into the holes in the board where wires will connect: 15 along the right edge of the board (where the NCI module will connect), two for J1, two for S2, and seven for S1. Turn the board over
carefully and rest it on the pins while you solder them in place.

Next install the 59 fixed-value resistors. The holes for all the resistors are spaced so that the leads of each resistor can be bent right at the body. To ease troubleshooting, mount the resistors so that the color codes point the same way.

Install the capacitors, taking care to orient the polarized electrolytic and tantalum types correctly. Keep all the capacitors as close to the board as possible, bending their leads if necessary to match the hole spacing.

Install the diodes next, taking care both to orient them correctly and not to mistake the different types. In particular, be certain that the 6.2 -volt Zener is inserted in the D3 position, and that the 8.2 -volt Zener goes in the D11 spot. Use care in bending the leads of the diodes, particularly the glass types.

Now install the transistors. To avoid mixing up the two types, first insert and solder the five PNP devices (Q3, Q5, Q10, Q13, and Q14). Then insert the nine NPN transistors in the remaining positions, and solder them in place. Keep the transistors close to the board-their cases should be no more than $1 / 4$ inch from its surface.

Press the four RCA jacks (J2, J4, J5, and J6) into the board and bend their tabs over to hold them in place. Check that they are all firmly and squarely seated, then solder them in place, using a fair amount of solder to obtain firm joints.

Insert the two trimmer resistors, R50 and R55, into the board and solder them in place. Be certain that they are well
mounted, so that repeated adjustments will not work them loose.

Press the RF modulator into the board and twist its lugs to hold it in place. Solder the lugs to the foil, using plenty of solder to make a secure joint. Not only do the lugs hold the relatively heavy modulator in place, but they are used as jumpers to extend the ground plane to two points near the center of the board. Poor mounting will cause problems. Insert the modulator's four leads into their holes, noting that they angle back from the edge of the board slightly. Pull the leads tight, then solder them.

Now install the 7805 regulator and its heatsink. The heatsink supplied with the kit has two pins extending from one end to facilitate vertical mounting. Since the heatsink will be mounted horizontally, remove the pins with a pair of pliers.

Insert the 7805 regulator into the board with its metal tab toward Cl , and then bend it so that the hole in its tab lines up with the hole in the board. DO NOT solder its leads yet.

Pass the heatsink's mounting screw through the PC board and through several metal washers to hold the regulator slightly above the board. Apply a layer of heatsink compound to the back of the 7805 and attach the heatsink, tightening the screw firmly. Solder the regulator's leads now.
The last step in building the PC board is to mount power-on indicator LED2. It must extend from the edge of the PC board to meet its mounting hole in the front panel. The easiest way to determine its mounting position is to temporarily fit the

FIG. 7-MOST COMPONENTS EXCEPT THE SWITCHES AND J1 mount on the PC board. Use PC-board pins to connect the off-board components.

FIG. 8-THE PC BOARD MOUNTS IN THE BOTTOM of the case and the NCI decoder module mounts in the top. Make sure that the three jumper cables connecting the PC board and the module are oriented correctly.

PC-board and the front panel into the case. After the LED's leads are bent to fit, remove the board and solder the LED in place. Note that the lead next to the flat edge of the LED's case goes to the hole nearest the corner.

After all components have been mounted, inspect your work for incomplete joints and solder bridges, and correct any problems. Clean flux from the bottom of the board, and then spray it with an acrylic dielectric spray. Doing so will
help the decoder to remain trouble-free in changing humidity conditions.

Interconnections

The connectors that couple our board to the NCI module are an unusual type with $0.1^{\prime \prime}$ spacing between adjacent pins. They are insulation-displacement types, so you need only press a strand of ribbon cable into each contact. We use three connectors of different sizes: four-, five-, and six-contact points. Each interconnecting cable has a connector only at the end that attaches to the NCI module; the other end is soldered to the PC board.

Cut three pieces of ribbon cable about six or seven inches long, one each with four, five, and six conductors, and separate the conductors about one inch at each end. Insert the unstripped wires into the "bays" of the appropriate connector and, holding them in place, pull the cable down across the terminals, but don't apply too much pressure. With the cable seated, use a small flat-blade screwdriver to push each wire into the notch of its terminal.

Strip about $1 / 4$-inch of insulation from the other end of each conductor of all three ribbon cables. Twist the strands together, and then solder the wires to the PC-board pins. Make sure that you solder those wires so that the connectors at the other end will be able to fit in the NCI module. Figure 8 shows how they should seat. The six-conductor cable should be split for an inch or so at the PC end between its second and third conductors in order to clear C15. Or you could push C15 so that it lies flat on the board. Don't break its ceramic coating or short any of the other connnecting pins. After all of the wires are soldered in place, inspect your work and correct any errors.

Attach J1 and S2 to the rear panel, and insert the panel into the top half of the case. Install the PC board and secure it with four self-tapping screws. Make sure that the jacks line up with the holes in the panel.

Connect wires between Jl's pins and the appropriate pins on the PC board. Then connect S2 to the channel-select pins, using segments of ribbon cable or other 20- to 24-gauge hookup wire. Keep the wires short and neat, but leave a small amount of slack to allow removal of the board or the panel.

Remove the anti-rotation lug from rotary switch S2 and mount the switch to the front panel, tightening its nut finger-tight. Fit the knob to the shaft and adjust the switch's position so that the knob's indicator lines up with the panel markings. Carefully remove the knob and tighten the nut. Then re-install the knob and make sure that the indicator still lines up.

Use bus wire to connect the five common terminals of S1-a together. Clip the terminals off just above the wire, and re-

PARTS LIST

All resistors are $1 / 4$－watt， 5% unless oth－ erwise noted．
R1，R22，R23，R52，R53，R56，R60－1000 ohms
R2－ 15,000 ohms
R3－ 270,000 ohms
R4－100，000 ohms
R5－22，000 ohms
R6－390 ohms
R7，R40－4700 ohms
R8，R58－180 ohms
R9，R20，R21－ 560 ohms
R10－R12，R17，R28－47，000 ohms
R13－R15，R34－470 ohms
R16，R61－75 ohms
R18－ 18,000 ohms
R19，R24－ 680 ohms
R25，R47，R48，R57－220 ohms
R26－180，000 ohms
R27－68，000 ohms
R29，R32，R38－2200 ohms
R30－ 1500 ohms
R31，R37，R44－ 3300 ohms
R33，R43，R49－330 ohms
R35－2700 ohms
R36－3900 ohms
R39，R59－10，000 ohms
R41，R45－ 12,000 ohms
R42－1800 ohms
R46，R54，R62－6800 ohms
R50，R55－1000 ohms，PC－mount，trim－ mer potentiometer
R51－100 ohms

Capacitors

C1－ $1000 \mu \mathrm{~F} 16$ volts，electrolytic
C2，C4，C6，C15，C24－0．1 $\mu \mathrm{F}$ ，ceramic disk
C3－ $1 \mu \mathrm{~F}, 35$ volts，tantalum
C5，C13－ $1 \mu \mathrm{~F}, 16$ volts，electrolytic
C7，C8，C19－ $10 \mu \mathrm{~F}, 16$ volts，electrolytic
C9，C21－22 $\mu \mathrm{F}, 16$ volts，electrolytic
C10－ $47 \mu \mathrm{~F}$ ， 16 volts，electrolytic
C11－39 pF，ceramic disk

C12－ $2.2 \mu \mathrm{~F}, 16$ volts，electrolytic C14－ 150 pF ，ceramic disk C16－ 100 pF ，ceramic disk C17－ $0.001 \mu \mathrm{~F}$ ，ceramic disk C18－220 pF，ceramic disk C20，C22－ $100 \mu \mathrm{~F}, 16$ volts，electrolytic C23－ $470 \mu \mathrm{~F}, 16$ volts，electrolytic

Semiconductors

IC1－LM7805T， 5 －volt regulator
D1－1N4001，rectifier
D2－not used
D3－1N4735 6．2－volt， 1 －watt Zener diode D4－10，D12，D13－1N914 switching diode D11－1N4738 8．2－volt， 1 －watt Zener diode LED1－standard red
Q1，Q2，Q4，Q6－Q9，Q11，Q12－2N2222A NPN
Q3，Q5，Q10，Q13，Q14－2N3906 PNP
Other components
J1－ $1 / 8$－inch miniature phone jack J2－J6－RCA phono jack
S1－2P6T miniature rotary switch
S2－SPST miniature slide switch
Miscellaneous：Astec UM1285－8 video modulator， NCI Telecaption Decoder Module，PC board， 12 －volt 500 －ma wall－ mount transformer，case，panels，wire， solder，etc．
Note：A kit（no．K－6314）including PC board，case，and all parts except RF modulator and power transformer is available for $\$ 139$ plus $\$ 7.55$ shipping and handling from Dick Smith Elec－ tronics，Inc．，P．O．Box 8021，Redwood City，CA 94063．The modulator（no． K －6040）is available for $\$ 9.95$ and the power transformer（no．M－9526）is available for $\$ 6.95$ ．Allow shipping of $\$ 1.50$ plus 5% of order．California resi－ dents must add 6.5% sales tax．Orders outside the U．S．must include U．S． funds and add 20% of total for ship－ ping．

FIG．9－THE NC1 MODULE，shown here with its cover；remved，mounts to the bottom of the case．
rear panel．The module must be all the way back to provide room for the rotary switch in front．Secure the module in place using self－tapping screws and wash－ ers．Do not connect the module to the PC board yet．

Testing and adjustment

Turn the rotary switch to off and plug the wall transformer＇s output plug into the power jack．Then plug the transformer into an AC socket and turn S1 to c1．LED1 should light up．Turn the knob through the other positions；the LED should remain lit．

Measure the voltage at the positive lead of C1．It should be no less than 12.5 and preferably no more than 16 volts．（That voltage will drop when the heavy load of the module is added．）Measure the 5 －volt supply at either the +5 volt pin of S1－b or at module connector pin 5C4．It should be within 0.25 volt of 5 volts．Finally，mea－ sure the voltage at the cathode of D3；it should be between 5.8 and 6.2 volts．If all voltages are correct，turn the decoder off and attach the connectors to the NCI mod－ ule．Turn the power back on．
move the off terminal completely．The terminals must be removed in order for the switch to clear the edge of the PC board． To prevent possible wiring errors，remove the two terminals corresponding to the OFF and the TV positions of S1－b．

Solder a six－to seven－inch length of seven－conductor ribbon cable to the pins near the front of the PC board．Connect the other end to the appropriate points of S1．Insert the front panel into the top of the case．

Drill a row of $3 / 8$－inch cooling holes along the bottom of the left half of the case．Those holes will let air get in to cool the heatsink；waste heat will pass by con－ vection through the gaps around the rear－ panel jacks．

Next mount the NCI module in the bot－ tom half of the case．The module has four mounting lugs designed for attachment to a flat surface．To mount the module to the standoffs in the bottom of the case，bend the lugs so that they extend straight out from the module＇s shielding can；then make an additional horizontal bend about

FIG．10－SYSTEM WIRING DIAGRAM shows how the decoder should be connected to your video system．The signal splitter and tV／GAME switch are optional．
$1 / 4$ inch from the first bend．Press the mod－ ule into place with the connectors on the opposite side of the cooling holes，and with the rear edge against the slot for the

Again measure the voltage at the positive end of capacitor C1．Ideally，it should be between 12 and 12.5 volts，but it may vary，depending on the wall trans－

ELECTRONIC FUNCTION SELECTOR

As promised last month, we'll describe an all-electronic function-selector circuit that can be used to replace the rotary function selector, S1. The circuit is shown in Fig. 1.
clock input; that pulse advances the counter by one. The 0 output goes low and the 1 output (pin 1) goes high, so the C2 LED lights up, and caption channel C2 is selected. Successive presses of S1 cycle

The heart of the circuit is a 4022 8-stage ring counter. In a ring counter, one and only one output is high at any time. Each output of the 4022 drives an LED via an inverter. The first four outputs are also connected to the corresponding inputs on the main PC board. When power is first applied, C2 and R3 reset the counter, so the 0 output ($\operatorname{pin} 2$) is high. Therefore, the decoder comes up tuned to the most popular closed-caption channel, C1.

When S 1 is pressed, a pulse is applied (via Schmitt trigger IC2-a) to the counter's
the 4022 through each of its states; a fifth press returns the decoder to the C1 mode, because the output 5 (pin 4) is coupled to the RESET input via diode D1.

You can build this circuit on a piece of perfboard and attach it to the front panel with spacers and screws. Note that a separate SPST switch will then be required to switch the decoder's power on and off; in addition, power-on indicator LED1 (on the main board) can be omitted, since one of the function LED's will light up whenever the power is on.

PARTS LIST- ELECTRONIC FUNCTION SELECTOR

R1-10,000 ohms
R2-47,000 ohms
R3- 15,000 ohms
C1- $1 \mu \mathrm{~F}, 16$ volts
$\mathrm{C} 2, \mathrm{C} 3-0.1 \mu \mathrm{~F}$
IC1-4022 ring counter

IC2-74C14 hex Schmitt trigger
D1-1N914
LED1-LED5-Standard
S1-SPST normally open pushbutton S2-SPST toggle
former used. To accommodate transformers with various output voltages, it may be necessary to alter the values of several resistors. We'll discuss those modifications in a moment.

Before closing up the case, temporarily connect the decoder to your video system
as shown in Fig. 9. Note that a video switch is shown in that figure; it can be used to bypass the decoder when caption decoding is not needed. If captions will be desired most or all of the time, the switch, and the signal splitter, can be omitted and the decoder's TV mode can be used to
bypass decoding, if necessary.
Select a strong station on the VCR or tuner, set your TV and S2 on the decoder to Channel 3 or 4 . Now turn everything on. Place S1 in the tv position.

If the picture and sound on the TV are good, then no adjustments to the modulator are necessary. But if either picture or sound is faulty, use a $1 / 16$-inch flat screwdriver to adjust the modulator's tuning coil (the one nearest the input leads) until the picture is good. Then adjust the other coil until the sound is clearest. You may have to adjust both coils several times to optimize both audio and video.
Set trimmer resistors R50 and R55 to the center of their travels, set S1 to C1, and tune in a captioned program. During the day, the best place to find one is on a PBS station. At night, try either a PBS or an ABC station. On satellite, tune in any of the ABC or PBS feed transponders.

If the captions appear with a dark background and bright, legible characters, no adjustments are necessary. But, if the boxes are too light, if the captions distort the picture, or if dark streaks appear in light scenes, adjust the blackness control (R50) until the boxes are as dark as they will get without streaks or distortion. If the characters are either too dim or smeared, adjust the CHARACTER control (R55) until they are clearly visible, but not smeared.
If proper adjustment cannot be obtained in the middle $1 / 3$ of the trimmer's travel (or cannot be obtained at all), the problem is most likely the 12 -volt supply. To compensate, one or two of the resistors in the blanking and Y level bias circuits will have to be changed. The resistors should be changed only if it is difficult to get clear captions and background.
If the background will not adjust properly, clip R47 from the board, leaving the lead stubs in place. Connect a 1 K trimmer resistor to the stubs and, with the background trimmer set to the center of its travel, adjust the new resistor to obtain a dark background without streaks or distortion. Turn the decoder off, measure the value of the pot, and replace it with the closest standard resistor. If you're careful, you can solder the new resistor to the leads of the old one without having to remove the board from the case.

If it is the characters that will not adjust properly, perform the same procedure, but substitute a 2 K trimmer resistor for R56.

After everything is working correctly, disconnect the decoder, assemble the case, and reconnect it to your video system. Now you're ready to enjoy the new world of closed-caption programming.

To conclude, it's our sincere hope that all of the hearing-impaired persons who are aided by this project enjoy using it as much as the author enjoyed designing and developing it and we enjoyed publishing it. It was truly our pleasure.

R-E

DTMF Encoding and Decoding

Thanks to new low－cost DTMF encoders and decoders，the world of DTMF signalling now is available for use in your next project．

DALE NASSAR

DTMF（DUAL－TONE MULTI－FREQUENCY） signalling was developed about two de－ cades ago by Bell Labs as a faster（by a factor of about 10），more versatile，and more reliable telephone－dialing scheme than the old pulse or rotary－dialing tech－ nique．The DTMF method is often re－ ferred to as tone dialing or Touch－Tone （note that Touch－Tone is a trademark of AT\＆T）and is used with push－button tele－ phones and other equipment．

A standard DTMF signal consists of a pair of audio tones chosen from a group of eight standard frequencies．Those fre－ quencies are divided into two groups：a low－tone group of four frequencies and a high－tone group of four frequencies．A valid DTMF signal consists of the al－ gebraic sum of one tone from the low group and one tone from the high group． There are therefore 16 （ 4 low $\times 4$ high $)$
possible DTMF signals that can be en－ coded with the eight frequencies．The four standard low frequencies are 697，770， 852 ，and 941 Hz ，and are referred to as row frequencies R1，R2，R3，and R4，re－ spectively．The four standard high fre－ quencies are $1209,1336,1477$ ，and 1633 Hz ，and are referred to as column frequen－ cies $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ ，and C 4 ，respectively． Any combination of DTMF tone can be generated using a 4×4 keypad switch matrix as shown in Fig．1．The DTMF frequencies and the keypad layout of Fig． 1 are international standards．The frequen－ cies produced by DTMF generators are allowed $\mathrm{a} \pm 1.5 \%$ deviation from the listed standards．Note that all of those tones are well within the telephone sys－ tem＇s voice band．

The choice of the standard DTMF fre－ quencies was by no means an arbitrary
one．The designers of the DTMF system used a great deal of care in selecting the particular frequencies．Other tones that may appear on the telephone line such as dial tones and power－line noise must not fall in the DTMF frequency band．Further， the standard frequencies must have no harmonic interaction，thus the highest standard frequency $(1633 \mathrm{~Hz})$ is lower than the third harmonic of the lowest stan－ dard frequency $(697 \mathrm{~Hz})$ ．

Conventional telephones that use DTMF signalling are usually equipped with a standard 3×4 keypad matrix for representing the digits $0-9$ ，and two spare symbols，＊（star or asterisk），and \＃ （pound or octothorpe），which can be used for various purposes．That 3×4 matrix represents all four row frequencies （R1－R4），and the three lowest column fre－ quencies（Cl－C3）．Some special－purpose

FIG. 1-STANDARD DTMF KEYPAD layout. The DTMF row and column frequencies are as shown.
telephones use the fourth column (C4) to represent four additional symbols (shown as A, B, C, and D in Fig. 1) in order to encode all of the sixteen possible DTMF signals.

If you have a tone-dial phone you can listen to a DTMF signal by simply picking up the telephone handset and pressing one of the buttons. For example, pressing the 8 key generates a $852-\mathrm{Hz}$ tone (R3) and a $1336-\mathrm{Hz}$ tone (C2) simultaneously. Those signals are processed and decoded by a DTMF receiver at the telephone company's central office.

The central office contains the switching equipment that provides local-exchange telephone service for a given geographical area. That area is designated by the first three digits of the telephone number. After the connection is established between the called and the calling parties, the DTMF receiver (at the central office) is no longer active and the connected parties are free to use the keypadgenerated signals for station-to-station (end-to-end) signalling.

Until very recently, the DTMF encoders used by the telephone companies exclusively used large and bulky transistorized LC-tuned oscillator circuits to generate the tones. Many such LC circuits are still in use. Such rugged circuits were used by the telephone company because they were extremely dependable. They were designed to withstand the worst of operating conditions. For the hobbyist, limited parts availability makes building that type of circuit almost impractical. Fortunately it is also unnecessary, as DTMF generators are available in IC form.

Further, until just a few years ago the experimenter had to settle for a not-soreliable IC decoding (receiving) system. The decoding circuitry had to be built up using a number of simple IC's. For instance, a separate 567 phase-locked-loop tone-detector IC was required for each
frequency used, for a total of eight. Additionally, each tone detector had to be tuned by critical external timing components. Because each DTMF signal received activated two detector outputs (one for each frequency received), a logic circuit had to be added to convert those outputs into a usable format. The net result was a complex circuit that was time-consuming to build and difficult to align. Also, performance was often unsatisfactory. True, performance could be improved with the addition of pre-filtering at the inputs of each tone detector. But the active-filter circuitry required for that
made an already complex circuit even more so.

Fortunately, those days are gone forever. With the new DTMF IC's available today, a complete and extremely reliable DTMF-encoding and -decoding system can be breadboarded in less than 10 minutes. Also, the built-in features of those decoding IC's usually include pre-filtering, complex processing, signal validation, etc., making possible a high degree of efficiency and reliability. In addition, no external tuning components are required, keeping the parts count minimal. DTMF IC's are manufactured by Nation-

FIG. 2-INSIDE A DTMF ENCODER. The S2559E DTMF generator IC is shown here in block-diagram form.

FIG. 3-TWO TYPES OF KEYPADS can be used with DTMF encoders. The one shown in a is a standard telephone tone-dialing keypad and uses DPST switches. The one shown in b is a calculator-type keypad and uses simple SPST switches, but it can not be used with all encoder IC's.
al，Silicon Systems，Mostek，Motorola， AMI，and Teltone．

Although the DTMF system was origi－ nally designed for telephone dialing，it is extremely useful as the basis for remote－ control systems．In this article we＇ll de－ scribe some of the DTMF－encoding and －decoding IC＇s that are commercially available，and how they can be used in remote－control applications．After read－ ing this article，you should have no trouble choosing and sucessfully using the DTMF IC＇s that best fit your needs．

DTMF encoding

The heart of a DTMF encoder is a a DTMF tone－generator IC．Those IC＇s are extremely easy to use and are very low in cost．Some DTMF tone generators are available for less than $\$ 2.00$ in single quantities！They generate the desired DTMF signals by dividing a crystal－gen－ erated reference frequency．The oscillator is on－board the IC；the crystal is simply connected across two terminals of the IC． The most－common crystal frequency is 3.579545 MHz ；that＇s the TV color－burst frequency，so those crystals are readily available and low in cost．However，as we will see shortly，other frequency refer－ ences may be used for special purposes．

A block diagram of a typical tone－en－ coder IC is shown in Fig．2．The IC illus－ trated there is a Gould AMI（3800 Homestead Rd．，Santa Clara，CA 95051） S2559E．The desired DTMF signals are activated by a twelve－key (3×4) or six－ teen－key (4×4) matrix keypad that is connected directly to the row－and col－ umn－input pins of the tone－generator IC． Two major types of keypads are used：One is the standard telephone pushbutton key－ pad．They are used with IC＇s that generate tones whenever the corresponding row and column pins are pulled high．As shown in Fig．3－a，that keypad consists of a series of DPST momentary switches with a common line that simultaneously pulls the corresponding row and column outputs high when pressed．Note that some encoders are active low．For those， the keypad common line is connected to ground．Then，the appropriate row and common outputs are grounded when a key is pressed．The other，and simpler，keypad arrangement is shown in Fig．3－b．Re－ ferred to as a calculator－type or X－Y key－ pad，it consists of SPST momentary switches and can be built easily．However， it can only be used with tone generators that use calculator－type scanning circuitry to detect switch closures．The S2559E contains such circuitry．Generally，the data sheet of a particular tone encoder will specify the type of keypad required．

A simple DTMF encoder is shown in Fig．4．It mainly consists of a 16－key SPST keypad like the one shown in Fig． $3-b$ ，and the S2559E tone－encoder IC． Power can be supplied by a small power

Pin	Function
SIGNAL IN	DTMF input．Internally biased so that the input signal may be AC coupled．signal in also permits DC coupling as long as the input voltage does not exceed the positive supply．
$12 \sqrt{16}$	DTMF－signal detection control．When $12 \sqrt{16}$ is at logic 1，the M－957 detects the 12 most commonly used DTMF signals（ 1 through \＃）． When $12 \sqrt{16}$ is at logic 0 ，the M－957 detects all 16 DTMF signals（ 1 through D）．
A，B	Binary DTMF signal－sensitivity control inputs．A and B select the sensitivity of the SIGNAL IN input to a maximum of -31 dBm ．
D3，D2，D1，Do	Data outputs．When enabled by the oe input，the data outputs provide the code corresponding to the detected digit in the format programmed by the HEx pin．The data outputs become valid after a tone pair has been detected and are cleared when a valid pause is timed．
OE	Output enable．When of is at logic 1，the data outputs are in the CMOS push／pull state and represent the contents of the output register．When OE is driven to logic 0 ，the data outputs are forced to the high－impedance or＂third＂state．
HEX	Binary output format control．When HEX is at logic 1 ，the output of the M－957 is full 4 －bit binary．When HEX is at logic 0 ，the output is binary－coded 2 －of－8．
STROBE	Valid data indication．STROBE goes to logic 1 after a valid tone pair is sensed and decoded at the data outputs，STROBE remains at logic 1 until a valid pause occurs or the CLEAR input is driven to logic 1 ，whichever is earlier．
CLEAR	STROBE COntrol．Driving CLEAR to logic 1 forces the sTROBE output to logic \emptyset ．When CLEAR is at logic \emptyset ，sTROBE is forced to logic \emptyset only when a valid pause is detected．Tie to VNA or VND when not used．
BD	Early signal presence output，bo indicates that a possible signal has been detected and is being validated．
XIN，XOUT	Crystal connections．When an auxiliary clock is used，xin should be tied to logic 1.
OSC／CLK	Time base control．When osc／CLK is at logic 1，the output of the M－957＇s internal oscillator is selected as the time base．When OSC／CLK is at logic \emptyset and XIN is at logic 1，the AUXCLK input is selected as the time base．
AUXCLK	Auxiliary clock input．When osc／CLK is at logic \varnothing and xin is at logic 1，the Auxclk input is selected as the M－957＇s time base．The auxiliary input must be 3.58 MHz divided by 8 for the $\mathrm{M}-957$ to operate to specifications．If unused，Auxclk should be left open．
VNA，VND	Negative analog and digital power supply connections．Separated on the chip for greater system flexibility，VNA and VND should be at equal potentials．
Vp	Positive power suppy connection．

supply or by a conventional 9 －volt battery． Because the S 2559 E is a CMOS device， power consumption is low．Typically，the circuit shown will draw 5 mA during en－ coding and $7 \mu \mathrm{~A}$ when idle．Since the device is CMOS，be sure to observe all of the standard precautions when handling the IC．

Encoder output

The output of the encoder consists of two of the eight DTMF frequencies．Fig－ ure 5 shows an oscilloscope display of the row－ 3 signal（ 852 Hz ）and Fig． 6 shows the column－2 signal $(1336 \mathrm{~Hz})$ ．The DTMF output is produced by adding the two signals together．The resulting signal，

FIG. 4-A COMPLETE DTMF ENCODER requires just a keypad, an encoder IC, a crystal, and two additional components.

FIG. 5-A ROW 3, 852 Hz , DTMF signal.

FIG. 6-A COLUMN 2, 1336 Hz DTMF signal.
which would be generated by pressing the "8" key, is shown in Fig. 7. Note that the output of the S 2559 E is not a pure sinewave. Instead the output is a digitally synthesized approximation, as shown in Fig. 8.

The S2559E also is capable of generating single-frequency tones. To place the IC in the single-frequency mode, pin 15, the mode-select pin (MDSL), is either tied high or left floating; for DTMF operation, that pin is grounded. Once in the singlefrequency mode, a single frequency is output by pressing two keys in the appropriate row or column. For instance, simul-
taneously pressing the 4 and 5 keys (in row 2) will result in a $770-\mathrm{Hz}$ output. The single-frequency mode is used primarily for testing.

The S2559E, as well as most other encoder IC's, have mute and transmit pins (mute and xmit). In the S2559E, when no keys are pressed, the mute pin is low and the xMIT output is enabled and can

FIG. 7-WHEN THE DIGIT 8 is pressed on the keypad, the encoder generates the signal shown here. It consists of the sum of the row 3 (Fig. 5) and the column-2 (Fig. 6) signals.
source current to an external load. When a key is pressed, the xmit output goes into a high-impedance state and the mute output goes high. Those pins are used in telephone applications. For instance, the mute pin is used to mute the telephone receiver during dialing so that the user does not hear the DTMF signals at full volume. The enterprising experimenter will doubtless find many other uses for those handy outputs.
To make the output of the encoder circuit audible, a speaker or some other transducer must be driven by the output signal. The S2559E output must be buffered to drive an 8 -ohm speaker, but other high-impedance speakers can be driven by the IC directly. For example, the author has driven the earpiece from an old telephone headset by adding a 330 -ohm resistor in series with the earpiece to prevent loading the encoder's output as well as to increase battery life.

We've been discussing the S2559E thus far, but there are three other members of that IC family. They are the S2559F, G, and H . Those four devices have replaced the earlier A, B, C, and D versions and feature extended operating voltage (2.5 to

FIG. 8-THE OUTPUT OF THE S2559E is not a pure sinewave. Instead it is a digitally synthesized waveform. The stairstep-shape of such a waveform is shown here.

FIG. 9-INSIDE A DTMF DECODER. The M-957 DTMF decoder IC is shown here in block-diagram form.

TABLE 2－DTMF TO BINARY DECODING

Signal	Low－ Frequency Component （Hz）	High－ Frequency Component （Hz）	Hex Output Format	$\begin{aligned} & \text { 2-Of-8 } \\ & \text { Output } \\ & \text { Format } \end{aligned}$
			3210	3210
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 697 \\ & 697 \\ & 697 \\ & 770 \end{aligned}$	$\begin{aligned} & 1209 \\ & 1336 \\ & 1477 \\ & 1209 \end{aligned}$	$\begin{aligned} & 0001 \\ & 0010 \\ & 0011 \\ & 0100 \end{aligned}$	$\begin{aligned} & 0000 \\ & 0001 \\ & 0010 \\ & 0100 \end{aligned}$
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 770 \\ & 770 \\ & 852 \\ & 852 \end{aligned}$	$\begin{aligned} & 1336 \\ & 1477 \\ & 1209 \\ & 1336 \end{aligned}$	$\begin{aligned} & 0101 \\ & 0110 \\ & 0111 \\ & 1000 \end{aligned}$	0101 0110 1000 1001
9 0 \＃	$\begin{aligned} & 852 \\ & 941 \\ & 941 \\ & 941 \end{aligned}$	$\begin{aligned} & 1477 \\ & 1336 \\ & 1209 \\ & 1477 \end{aligned}$	$\begin{aligned} & 1001 \\ & 1010 \\ & 1011 \\ & 1100 \end{aligned}$	$\begin{aligned} & 1010 \\ & 1101 \\ & 1100 \\ & 1110 \end{aligned}$
$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 697 \\ & 770 \\ & 852 \\ & 941 \end{aligned}$	$\begin{aligned} & 1633 \\ & 1633 \\ & 1633 \\ & 1633 \end{aligned}$	$\begin{aligned} & 1101 \\ & 1110 \\ & 1111 \\ & 0000 \end{aligned}$	$\begin{aligned} & 0011 \\ & 0111 \\ & 1011 \\ & 1111 \end{aligned}$

Note：The M－957 detects signals A through D only when the． $12 \sqrt{6}$ input is at logic \varnothing ．

FIG．10－USING THE M－957，building a DTMF decoder requires just the IC，a crystal，and a capacitor．

10 volts），improved tone fidelity，and an on－chip oscillator bias－resistor．In the S2995F，the MDSL function of pin 15 is replaced by a chip disable（CD）function that is active high．When that pin is tied high，the row and column inputs are placed in a high－impedance state，the tone output is tied to ground，the oscillator is inhibited，the MUTE pin is tied high，and the xmit pin is enabled．Essentially，the effect is that the IC is electronically dis－ connected from the keypad．That allows one keypad to be shared by several dif－ ferent devices．

The S2559G and H are identical to the S2559E and F，respectively，except that the output transistor has been replaced by a Darlington pair．In some applications that eliminates the need for an external transistor amplifier stage in the telephone ircuit．

DTMF decoding

DTMF decoding is considerably more complex than DTMF encoding．The most involved function of the detector is to deter－ mine whether a received signal within the DTMF frequency band $(697-1633 \mathrm{~Hz})$ is a true DTMF signal or merely noise or speech．The detector must also be capable of detecting a DTMF signal that is combined with such noise．The DTMF detector should recognize any valid DTMF signal that is within $\pm 2 \%$ of the standard value．The de－ tector＇s job is made somewhat easier by the fact that a DTMF signal must have a mini－ mum duration of 40 ms ，and that each DTMF signal must be separated from others by at least 35 ms ．

Somewhat surprisingly，most of the cir－ cuitry required to decode DTMF signals is now available in IC form．Therefore，despite its greater complexity，an entire 16－digit de－

FIG．11－USE THIS LED MONITOR CIRCUIT to verify that the encoder and decoder are operat－ ing correctly．
coder can be built as easily and as simply as a 16－digit encoder．
DTMF decoders are often referred to by manufacturers as DTMF receivers．Those devices have only recently become com－ monly available at affordable prices．Some can be purchased for under $\$ 15.00$ in single－ unit quantities．Just a few years ago，when the first IC encoders became available，those devices cost about $\$ 100$ ，and required exter－ nal filters．The IC＇s on the market today are extremely sophisticated signal－processing devices with switched－capacitor filtering that use digital frequency－detection tech－ niques．They can reliably detect DTMF sig－ nals with no need for pre－filtering．
The decoder that we＇ll use in our circuit is the M－957 from Teltone（P．O．Box 657 ， 10801－120th Ave．N．E．，Kirkland，WA 98033）．That CMOS device can be powered by a DC power supply or batteries．There are two versions of the M－957：the M－957－01， which can accept voltages of 5 to 12 ，and the M－957－02，which is designed for 5 －volt op－ eration only．

A block diagram of the M－957 is shown in Fig．9．The function of each pin is outlined in Table 1．The pre－processing stages of the M－957 filter out noise and split the received DTMF signal into its high and low－frequen－ cy－group components，and limit each com－ ponent to provide automatic gain control． The individual tones are then detected．The decoded output of the M－957－01 is a 4 －bit binary code appearing at the D $\emptyset-D 3$ out－ put．The output code format can be se－ lected via pin 2，hex．When that pin is
high (logic 1), the output format is 4-bit hexadecimal; when the pin is low (logic \emptyset), the output format is binary-coded 2-of-8.

Putting it together

It takes very little in the way of external circuitry to put the M-957 to work. Adding just a single capacitor and a crystal as shown in Fig. 10 yields a functional DTMF receiver/decoder.

Now that we have an encoder and a decoder, the next step is to verify that both work as intended. The easiest way to do that is to wire the output of the encoder (Fig. 4) to the input of the decoder. If you are using separate sources (batteries or DC power supplies) to power the circuits, be sure to tie their grounds together.

To monitor the output states of the encoder during testing you can build a simple monitor circuit like the one shown in Fig. 11. That circuit uses $5 / 6$ of a 4049 hex inverter as a buffer to drive five indicating LED's. Those five LED's show the states of the four data outputs as well as state of the strobe output. Table 2 shows the correspondence between the DTMF signal received and the state of the data outputs. The strobe output should be high, as indicated by a lighted LED, any time that a valid DTMF signal is received and decoded by the circuit.

Once you are sure that the decoder is operational it is time to think about adding to its usefulness and versatility. For one thing, the outputs could be further decoded to provide a 1 -of-16 output. A circuit for doing that is shown in Fig. 12.

FIG. 12-THE FOUR-BIT OUTPUT of the M-957 is decoded using this circuit. With it, each DTMF code can be used to address one of the 16 outputs.

ORDERING INFORMATION

The following is available from High Technology Semiconductors, 2512 Chambers Road, Suite 204, Tustin, CA 92680, (714) 259-7733: Teltone M-957-N, $\$ 11.35$; Stantel STC-5089-N (which is pin-for-pin compatible with the AMI S2559E), \$2.10;3.58-MHz crystal, \$1.25. Also available is a kit of parts, TRK-957-N, which consists of the M-957, STC-5089, 3.58MHz crystal, a 22 -pin DIP socket, and a 1 megohm resistor for $\$ 14.95$. Please add $\$ 2.30$ shipping to all orders. MasterCard, Visa, and COD orders accepted.

Built around a 74C154 4-to-16 decoder/ multiplexer, it provides 16 separate output lines. Each of the 16 DTMF signals will enable only one of the circuit's normally high outputs. For instance, if a DTMF 9 is received, only the s 9 output, pin 10 of ICl , will go low. That output will remain low as long as a valid DTMF 9 is being received by the circuit.

Another useful enhancement would be to add some type of latched output. That means that once the appropriate DTMF signal is received, the output would remain either high or low until the next time the same DTMF signal is received. Such operation approximates the on/off action of a toggle or pushbutton switch.

A circuit for adding latched outputs is shown in Fig. 13. It is built around half of a 74 C 73 dual flip-flop that is configured to act as an edge-triggered binary divider (divide-by-2). When the circuit is used as shown, no external debounce circuitry is required. The input is shown as a DTMF D, but it could be any of the DTMF signals. Two complementary latched outputs are available. Use whichever output is appropriate for your application. Tie all of the IC's unused inputs (ICl-b) to ground to prevent oscillation and unnecessary current drain.

Switch S1 is used to clear both outputs to zero. That switch is not needed for all applications and can be eliminated if desired. Conversely, the circuit can be set up

FIG. 13-LATCHED OUTPUTS can be provided using this circuit.
for remote reset. That is done by eliminating the switch and the 2.2 K resistor (R 1) and tying one of the momentary outputs of the 74 Cl 54 to the CLR_{A} pin of the 74 C 73. For example, if pin 17 of the $74 \mathrm{Cl54}$ is connected to pin 2 of the 74C73, the latch will be reset anytime a DTMF C is received. If no reset function is desired, the cle pin must be tied high.

Up to sixteen devices may be independently controlled by the outputs of the circuit in Fig. 12. If the controlled device is digital and if it is voltage-compatible with the decoder output, direct connection to that device is possible. If heavy driving currents are required, that current can be supplied by transistor switches located at the decoder outputs. If the voltages are not directly compatible, matching can be done using optocouplers or power-driver IC's. Also solid-state relays may be used to interface the digital signals with high-voltage, high-current loads, such as 117 -volt AC household appliances, or even industrial devices with larger power requirements.

Going farther

If a wireless data link is desired, any simple, single-channel radio or infrared communications link may be used. For example, a toy walkie-talkie set or a lowcost FM wireless-microphone/FM radio system may be used.

Many DTMF tone generators can be driven by logic-level signals. That allows direct control of DTMF signalling by a microprocessor or ROM circuit. The S2559E requires active high logic-levels at all of its row and column inputs. That means that an 8 -bit signal or some type of external driving circuitry is required for digital control of the IC. Other DTMF devices are better suited to digital control. One such device is AMI's S2579 DTMF tone generator with binary input. That device is designed so that a 4-bit digital signal can be used to encode all 16 DTMF signals.

The DTMF IC's will function with crystal frequencies other than those specified for DTMF operation. However, the frequencies that will be generated or decoded will differ from the standard DTMF ones. If a higher crystal frequency is used, all tones will be correspondingly higher in frequency; if a lower crystal frequency is used, all tones will be lower in frequency. That effect can be useful for applications such as when a private communications code is desired.

In this article we've presented some of the basics of DTMF communications. We've also presented some possible applications of that technology. For the enterprising experimenter there are countless more. Now that the cost of the required encoding and decoding IC's is so low, the only limit to their use is your own imagination.

R-E

How to

Design OSCILLATOR Circuits

Digital clock circuits using TTL IC＇s．

Part 6THIS TIME WE＇LL DIS－ cuss digital clocks． We don＇t mean time－of－day clocks，but circuits that create pulse trains for syn－ chronizing digital circuits．Digital clocks usually produce either a squarewave or a trapezoidal wave．In this article we＇ll dis－ cuss digital－clock circuits based on TTL IC＇s．

TTL basics

The TTL logic family was probably the first really successful family of integrated digital devices．Previous families（e．g．， RTL and DTL）never really attained the widespread popularity enjoyed by TTL devices．One reason for TTL＇s popularity is that it uses standard input and output circuits，and standard logic levels．

A digital circuit is binary in nature；that is，it permits only two possible states． Those states， 1 and \emptyset ，can be represented by the digits of the binary（base 2）number system．Those two states are often called high and low（respectively）．

Figure 1 shows the standard logic levels for TTL devices．The high condition is attained when the input or output voltage is greater than +2.4 ，but less than +5 ． The low condition is represented by any voltage between 0.0 and 0.8 ．Voltages above +5 （the groan zone）and below ground（the zap zone）must be avoided．In addition，an inappropriately connected
capacitor or inductor can also feed too much（or incorrectly polarized）voltage to TTL devices．

The members of any logic family work together because inputs and outputs can be interconnected with only a conduc－ tor－no impedance－matching or other de－ vices are necessary．Figure 2－a shows a standard TTL output，and Fig．2－b shows a standard TTL input．The TTL input acts

FIG．1－VOLTAGE LEVELS OF A TTL IC deter－ mine logic state．Any voltage below 0.8 is a log－ ical low；any voltage above 2.4 is a logical high． Signals in the groan and zap zones may destroy a TTL device．
as a $1.6-\mathrm{mA}$ current source，and the TTL output acts as a $16-\mathrm{mA}$ current sink．

To interface TTL devices，all we must do is make sure that current－drive require－ ments are met．Those requirements are simple to calculate because of stan－ dardization．A single $1.6-\mathrm{mA}$ input is said to have a＂fan－in＂of 1 ．A single $16-\mathrm{mA}$ output has a fan－out of 10 ．In other words， a standard TTL output can drive 10 stan－ dard（fan－in－of－1）devices．

There are several sub－families of TTL devices．For example，low－power TTL de－ vices are signified by an＂L＂in the part number（e．g．，74L00）．L－type devices have lower drive capacity than regular TTL．There is also high－speed TTL， which contains an＂ H ＂in the part number （e．g．， 74 H 00 ）．There is also low－power Schottky．That is probably the most com－ monly used type of TTL IC；it contains ＂LS＂in the part number（e．g．，74LS00）．

The LS type of TTL device has Schot－ tky diodes at its inputs；those diodes are somewhat sensitive to static electricity． Therefore，it is recommended that you handle LS－series TTL devices almost as gingerly as you would handle CMOS de－ vices．The various sub－families have dif－ fering drive capacities；consult a data book for details．

Using TTL

Figure 3 shows a circuit that converts

FIG. 2-STANDARD INPUT (a) and output (b) circuits make it easy to interconnect various TTL devices.

FIG. 3-A TRANSISTOR OSCILLATOR may be made TTL-compatible by following the output with a comparator.

FIG. 4-A SCHMITT TRIGGER may also be used to make a transistor oscillator TTL-compatible.
the output of a transistor-based Colpitts oscillator circuit to TTL levels. As we saw in Part 5, which appeared in the November issue, the feedback level in a Colpitts oscillator is set by the capacitive voltage divider composed of C 1 and C 2 . The oscillator's frequency is set by XTAL1, a piezoelectric crystal. Variable capacitor C3 allows fine control of frequency.

The output stage is an LM311 comparator. A comparator is basically a differential amplifier with too much gain. In any differential amplifier, the output voltage is a function of the difference between the two input voltages. When the input voltages are equal, the difference is zero, so the output voltage will be zero. But when those voltages differ by even a few millivolts, the output voltage will be nonzero. The gain of a typical comparator is 10,000 to 100,000 , so the output will satu-
rate any time that the differential input voltage is non-zero.

In Fig. 3, the non-inverting input is grounded, so it sees a zero potential. Hence, whenever the signal applied to the inverting input (pin 3) exceeds zero volts, the output will go low.

The LM311 has what is called an "open-collector" output stage. That means that it requires a pull-up resistor (R4) in order to supply current. The 2.2 K resistor shown can supply only about two mA of current at five volts, so the LM311's output is not truly TTL-compatible.

Another way to accomplish the same trick is to use a TTL IC called a Schmitt trigger. The operation of the Schmitt trigger follows this simple rule: The output will snap high when a positive-going input signal crosses a certain threshold (1.7 volts), and it will snap low when the input signal crosses a lower threshold (0.9 volts) in a negative-going direction. If the transistor oscillator shown in Fig. 3 is used to drive a Schmitt trigger, as shown in Fig. 4, the sinewave output of the oscillator will produce a train of squarewaves at the output of the Schmitt trigger.

FIG. 5-AN RC OSCILLATOR (a) can be built with three gates and several discrete components. For better stability and accuracy a crystal oscillator may be used. Two popular configurations are shown in (b) and (c).

FIG. 6-A TTL-COMPATIBLE VCO requires just a crystal and a few discrete components to be a very stable oscillator.

Pure TTL clocks

Several TTL oscillators are shown in Figure 5. The circuits shown in Fig. 5-a and Fig. 5-b use nand gates configured as inverters; the circuit in Fig. 5-c uses three standard inverters. The frequency at which the circuit in Fig. 5- a oscillates is determined by capacitor Cl and resistors R1 and R2. Potentiometer R1 allows you to vary the operating frequency over a small range. If only a single fixed frequency is needed for your application, replace R1 and R2 with a single fixed resistor.

One disadvantage of any RC oscillator is that its operating frequency is neither stable nor accurate. The effects of both problems can be reduced by using a piezoelectric crystal, as in Fig. 5-b and Fig. 5-c. Two of the nand gates are used for the oscillator (IC1-a and IC1-b); the third functions as a buffer stage. Operating frequency is set by crystal XTAL1, and may be varied with capacitor Cl .

The circuit shown in Fig. 5-c is similar to the one shown in Fig. 5-b, and is based on TTL inverters. Again, one stage (IC1c) is used as an output buffer, and the oscillating stages are self-biased.

Special TTL oscillators

There are several all-in-one TTL oscillators on the market; Fig. 6 shows the diagram of a circuit based on the MC4024P dual voltage-controlled oscillator. Only one oscillator is used in that circuit. By the way, don't confuse the MC4024P with the 4000 -series CMOS device called the 4024.

The center frequency of oscillation can be controlled in two ways: with a capacitor or with a crystal. For non-critical applications, a capacitor is used; it will have a value of approximately $300 / f(\mathrm{~Hz})$ picofarads. Potentiometer R1 gives you some control over the circuit's frequency.

TTL clocks are easy to build and to operate, especially in applications where a great deal of frequency stability is unnecessary. In the next and final installment of this series we will examine clock circuits made from CMOS IC's. R-E

PC SERVICE

One of the most difficult tasks in building any construction project featured in Radio-Electronics is making the PC board using just the foil pattern provided with the article. Well, we're doing something about it.
We've moved all the foil patterns to this new section where they're printed by themselves, full sized, with nothing on the back side of the page. What that means for you is that the printed page can be used directly to produce PC boards!

Note: The patterns provided can be used directly only for direct positive photoresist methods.

BUILD THE SINEWAVE DESCRAMBLER using this PC pattern.

A NEW KIND OF MAGAZINE FOR ELECTRONICS PROFESSIONALS

ALL ABOUT INTERFACING

Everything You Need To Know In the First Of A Two-Part Article

CONTENTS

December 1986
6 V-20 vs 8088
There's a new battle shaping up on the computer horizon. And when something new happens, we want to make sure you know about it. Marc Stern

9 All About Interfacing
This article has been a long time in coming. No matter what you want to connect to your computer, or what you want to connect your computer to, here, in the first of a 2-part article is all you need to know. Jeff Holtzman

3 Editorial

4 Letters
4 Computer Products
5 Software Review

See Page 6

See Page 9

ON THE COVER

If you're going to be doing ANY interfacing, you'd better start by reading the story beginning on Page 9 of this issue. Admittedly, it's a bit more involved than laying out photos and drawing the connecting lines! Most of the photos of assorted equipment around our office, were taken by Herb Friedman.

COMING NEXT MONTH

Naturally, we try to pack all the information that we can into each issue. But in the January, 1987 Issue, we've really outdone ourselves. You won't want to miss the conclusion of our two-part article on
 interfacing, and we've got an important how-to on TVRO antenna pointing. We're finishing up with a fine piece on a five-volt RS-232. Don't miss it.

EDITORIAL

Let's standardize the "standards."

-Henry Ford has to be the father of mass production, and he built this scheme on totally-interchangeable parts. The carburetor of one car could easily be switched with the carburetor of another car. And the need for standards extends well-into electronics. Every young electronics devotee knows the standard for the resistor color code. You can see them counting on their fingers, as they recite, "Bad boys..."

But something began to go awry when it came to stadardizing capacitor color codes. There were decimals to be considered, and multipliers, and the result was utter confusion.

Today, in the computer field, we have the so-called "RS-232" standard. But the manufacturers do not cleave to the standard, using their own variations for their own convenience. The result is a non-standard standard, and when you say "We're using RS-232," you find people asking just which "RS-232?"

It goes even beyond that. We have assorted operating systems, beginning with MS-DOS and CP/M and a host of other proprietary systems produced by various manufacturers, that prevent a software package that works on one, from working with another. The standard that seems to be emerging, is the IBM system, for almost every software manufacturer talks about "IBM compatibility."

Even the simple blank disk cries for standardization. You now have a choice of "hard sectored disks," or "soft sectored disks."

Wouldn't it be nice to be able to buy a computer without having to trace down the standards to make sure that they were indeed standard? Or that your projected computer purchase would operate all the disks you now have? Sure it would.

Now I'm shopping for a videocassette recorder. Top loading? Front loading? VHS? Beta? Programmable? Fast scan?

Decisions! All day long, decisions!

Byron G. Wels Editor

[^1]
COMPUTER DIGEST

 M. Harvey Gernsback, editor-in-chief, emeritus
Larry Steckler,

EHF, CET: publisher \& editor in chief
Art Kleiman,
editorial director
Byron G. Wees, editor
Brian C. Fenton,
managing editor
Carl Laron, associate editor
Robert A. Young, assistant editor Jeff Hoitzman
technical editor Teri Scaduto Wilson editorial assistant Ruby M. Yee, production director Karen Tucker, production advertising Robert A. W. Lowndes, production associate Geoffrey S. Weil, production assistant
Andre Duzant, technical illustrator

Jacqueline P. Cheeseboro

circulation director
Arline R. Fishman,
advertising director

Computer Digest
Gemsback Publications, Inc.
Executive offices
500-B Bi-County Blvd.
Farmingdale, NY 11735
516-293-3000
President: Larry Steckler
Vice President: Cathy Steckler
ADVERTISING SALES 516-293-3000
Larry Steckler
Publisher

NATIONAL SALES

Joe Share
1507 Bonnie Doone Terrace Corona Del Mar, CA 92625 714-760-8967

LETTERS

Too Long

I submitted an article to your magazine, and got paid for it. Thank you. That was several months ago, and it still hasn't appeared in print. What's the delay?-S.T., Orlando, FL.

Have a heart! First of all, things just take time. For example, this column will actually appear in the December Issue, but as I write these words, it's really August. The 17 th, to be exact. And yes, if you look it up on a calander, it's a Sunday. And right now, the magazine is all set through February. So maybe the next time we need a three-paser, and yours fits, you might get lucky.

Warranty

I'm confused about my computer warranty. It runs for a full year, unless I open the case! Now
(a) how can I add a board or do some construction if I don't open the case, and (b) how are they going to know whether or not I did?-J.T., Fresno, CA.

You pays yer money and takes yer cherce. Open it up, and you automatically void the warranty. And yes, they will know, for the manufacturers usually put a dab of paint on a cover-mounting screw, or paste on a small paper patch. Break the paint or paper and you kiss your warranty goodbye. We usually suggest waiting until the warranty expires before experimenting.

Budding Editor?

I'm fascinated with the publishing business and would (I think) like to get into it when I get older. What would you recommend?-A. L., Memphis, TN.

It's been extremely kind to me, and l'd suggest you start preparing the publishing business as well as yourself, by submitting articles on a freelance basis. This will help you learn to write, and will start setting your name around.

Expensive?

I've been pricing furniture (desks/tables) for my computer equipment. Now why is that stuff so expensive?-S.K., Reno, NV.

It doesn't have to be. Your local lumber yard can sell you a sheet of 4×8 plywood, finished one side and $3 / 4$-inch thick at a very low price. For another couple of bucks they'll cut 30-inches off one end and run another cut 30-inches down the length of the remainder. That will give you two handsome table tops, ready-to-finish and enoush wood to make legs with!

COMPUTER PRODUCTS

For more details use the free information card inside the back cover

VOICE-RECOGNITION SYSTEM, the
Voice Master, is a half-card expansion board with resident program that recognizes hundreds of words. It is designed for the IBM-PC, XT, AT and compatible

CIRCLE 27 ON FREE INFORMATION CARD
personal computers. Versions are currently available for Commodore, Apple II series, and Atari 8 -bit microcomputers.

The Voice Master has a sugsested retail price of $\$ 129.95$, which includes half-card circuit board, microphone headset, and
resident system software-Covox, Inc., 675-D Conger St., Eugene, OR 97402.

SYNCHRONOUS MODEM

The model 91 is designed to function point-to-point or in a multi-polled network. Multi-dropped operation is achieved by using a daisy-chained approach to system wiring, in which each model 91 regenerates each signal before passing it on in the link. That process of incorporating signal repeaters results in extremely-high data reliability, especially at long distances. At 19,200 baud, the model 91 will support link distances of one mile.

The opto-isolation feature assures that devices connected to the model 91 are electrically isolated from each other, thereby eliminating problems associated with potential differences between grounds.

The model 91 provides full duplex synchronous serial data communica-
tion from 150 to 19,200 baud using frequency modulation. Transmission of a self-clocking FM signal on a balanced

CIRCLE 28 ON FREE INFORMATION CARD
opto-isolated current-loop allows transfer of clocking information as well as data. The model 91 can also be linked to establish a full-duplex bus network between host and a number of remote terminals. It is priced at $\$ 250.00$ - Telebyte Technology, Inc., 270 Pulaski Road, Greenlawn, NY 11740.

SOFTWARE REVIEW

That's right! A print shop in your computer.

- Judging by its use, The Print Shop is probably the best-selling program. The program is used by schools, supermarkets, shops, even used-car dealers (and you know they're fussy about advertising).

For all its popularity, The Print Shop isn't a word processor, a spread sheet, time-manager or CAD/CAM. It's a signmaker. Using pin-feed paper it makes $81 / 2 \times 11$ inch signs, greeting cards from folded 8-1/2 $\times 11$ inch paper, letterheads, and banners; which can be used as advertising flyers, bookplates, report covers, award certificates, even abstract printed designs.

The program has an assortment of type styles in three formats (solid, outline and three-dimensional), borders, graphic characters and symbols, even abstract patterns. Each type style is its own size, each can be stretched to a proportional GIANT size. (The Commodore version has eight upper case fonts, nine border styles, and 60 graphics. The IBM version has twelve type styles in upper and lower case, sixteen borders, and 119 graphics.)

The user can integrate any type style with any border and any graphic, or any print function can be left out so the paper can be run through for a second or third printing, or run through to add conventional text from a word processor. When set to print greeting cards, all type, graphics and borders are reduced to the appropriate size and the printing is automatically rotated 180° so that everything comes out right side up when the paper is folded into a card.

Because the program was intended for children (if adults ever give them a chance to use it), it is menudriven by cursor movement: the user steps the cursor to the desired mode and then hits return. Each menu, except for graphics selection, shows the available and selected border and type styles. (The IBM version also shows the available and selected graphics.)

Special screens let the user select a small, medium or large graphic, built-in or custom graphic layouts, and line and pase type-setting. The screen shows the possible graphic locations depending on the user's size selection (the graphics cannot overlap), and the allowable characters per line for each type and size type. If you select GIANT size and the characters won't fit the available space the screen shows what will fit, along with left, center or right positioning normal, reverse or 3-D type on a per line basis, and automatic top-to-bottom centering, if desired.

The program is goof-proof, and you can step back through each function one at a time and change only

what you want to change without losing all your work. For example, if after completing a sign you decide to change the border, say from stars to hearts, you step back through the composing, type selection, and graphics until you come to the border menu. You then change the border and step forward through graphics and type without affecting anything other than the border selection. You can even step back and change the position of a single line of type, or its outline, or even erase a line or characters (there is a built-in editor). What you can't do is mix type styles or graphics. The only variation on this rule is the IBM version, which permits the type to be upper or lower case on a per-line basis; that is, the line must be all upper case or all lower case.

The Print Shop has a graphics editor that lets you create your own graphics. In the Commodore version, the user-generated graphics can be saved to disk, but that's all that can be saved. In the IBM version the graphics and any sign, card, stationary or banner design can be saved to disk.

Each version supports a selection of printers, which is listed on the back of the box. If your printer isn't listed assume the program will not work.

The Print Shop is supplied on disk and requires at least one disk drive. It comes with a supply of heavyweight pinfeed paper and greeting card envelopes. Additional multi-color supplies and disk volumes of additional graphics characters are available. The Print Shop is heavily discounted: It sells for $\$ 19.95$ to $\$ 59.95$ depending on the version and the dealer.Broderbund Software, 17 Paul Drive, San Rafael, CA. 94903-2101. $\langle\boldsymbol{C D}\rangle$

V-20

Is there a direction change in the offing?

MARC STERN

- The way to stay afloat in the microcomputer world is IBM emulation, as it is accepted by big business, professionals, and home users.

Many manufacturers, having first tried to go their own ways found that crowds weren't flocking to their doors for solutions. The crowds were still heading toward IBM. Those firms that were able to switch have survived, while those that haven't are no longer active in the microcomputer market:

The ultimate in emulation would be a microprocessor that not only emulates, but surpasses that used in the IBM Personal Computer series.

Such a microprocessor is the Nippon Electric Co.'s (NEC) V20/30 series. It not only emulates the 40 pin Intel 8086/8088 series, used in the IBM PC and close compatibles, but it betters that series by using less power (300 mW versus 1.7 W) and operates about 20 percient faster than the IBM version.

The only way you can differentiate between the two, is the NEC stamp on the microprocessor chip, and the " V " designation.

The V20/30 series has an added mode, 8080 emulation. This gives CP/M users an out because CP/M was written to work in a Z80/8080 environment. With an emulator the V -20 will function effectively as an 8080. So those CP/M programs which may have been threatened with obsolesence by the 8086/8088 series and PC/MS-DOS will gain a new life and users will be able to retain their investment in software.

A closer look

The V20 and V30 are equivalent to the 8088 and 8086 , respectively. Like the 8088 , the V 20 is an $8 / 16$ microprocessor. It has an 8 -bit data bus, but a 16-bit internal architecture. The marketing departments of various microcomputer manufacturers like to call this type of microprocessor a 16-bit device, but, it really isn't.

The true 16-bit device is the 8086. It has a 16-bit architecture, and also a 16-bit data bus. It is faster than the 8088 in realtime number crunching. The V 30 is the

Fig. 1: A DUAL INTERNAL BUS helps increase the performance level of the V20/V30 series. The 8086/8088 family has a single internal bus and must suspend information processing as it moves source and destination data back and forth. The V20/V30 can move this data simultaneously.
functional equivalent to this device.
Both microprocessors are available in 5 and 8 MHz versions and they are CMOS devices. While both microprocessor series are functionally equivalent, the V20/30 series uses 600 percent less power to handle the same jobs. For a system that is struggling at the razor edse of its power supply the lower demands of the NEC device can make a difference.

Not only are the V20/30 chips power misers in their active mode, they offer a standby mode where their power consumption drops from 300 mW to 30 mW which means these devices can be used in standard desktop machines, and they can be used in briefcase or lap-top microcomputers.

The advantases seem to be with the V20/30, because the V20/30 series is much newer than the 8086/8088 family. Because it was designed recently, NEC has taken advantage of Very Large-Scale Integration and gate array technology, as well as advances in CMOS technology to produce this capable chip. The 8086/8088 series was designed in the mid-1970s and its age is beginning to show.

Another result of the age difference is the V20/30's dual internal bus (See Fig. 1), which compares with the single internal bus of the 8086/8088 family. This can effectively increase the speed specifications of the V20N30 because destination and source data can move alons the data bus at the same time in two directions.

Data are taken into the registers in preparation for processing and the data are sent to the temporary storage registers and shifters. At this point, the data goes to the arithmetic-logic unit (ALU) for processing and then to either bus, depending on whether the information is source or destination. Data can pass from the registers back to the second bus.

Moving in parallel, the microprocessor is freed of of wait states generated by having to free alternate cycles on the data bus for 16 - bit source data and then destination data. Picture a single freeway lane trying to accommodate traffic in both directions during rush hour. This applies to the execution time of the $80886 / 8088$ family. (We're talking about a difference of microseconds and the user won't notice the difference in speedup unless the application crunches a lot of numbers and must constantly fetch and latch the numeric data.)

Another change in the architecture of the V20N30 is the substitution of hardware address calculations for the software (microcode) and hardware address calculation of the $8086 / 8088$ series. The V20/30 series includes a hardware section which performs address calculations from 2.6 to 6 times faster than the $8086 / 8088$. Where it takes the $8086 / 8088$ from five to 12 clock cycles to perform address calculations, the V20/ V30 performs them in two. Address calculation, then, is also transparent to applications, which means that a developer only has to be concerned with a standard set of addresses for a particular device, rather than having to worry about both hardware and software addressing.

Another performance enhancement that is unique to
the V20N30 is its prefetch pointer. (See Fig. 2)
Working with the instruction pointer, the prefetch pointer speeds things by moving to the next instruction and points to it as the microprocessor works through a program. A movable pointer, the prefetch jumps to the next instruction no matter how far it is from the instruction pointer. This enhances performance because the next instruction is always available for the micro.

The V20N30 besins with performance advantages that the 8086/8088 series doesn't have. These advantages wouldn't make much difference if the V20/ V30 wasn't compatible with the 8086/8088 family, which it is.

When it was developed, this series was modeled on and implemented the instruction set of the 80186/80188, a more powerful and later version of the 8086/8088 family. The differences were in the level of integration of such functions as the timer and interrupt controller, which are on-chip functions on the $80186 / 80188$ series. The instruction set is enhanced with new instructions which add power and flexibility, but without sacrificing compatibility. There's no loss of compatibility as the complete instruction set of the 8086/8088 series is supported, as well as the additional code.

Speed improvement

While the specifications indicate a potential speed increase, it doesn't work out that way in practice. The V20N30 series gives a user about a 20 percent increase in performance. Independent testing has confirmed this. The increase in speed is noticeable in processorintensive applications where the microprocessor must constantly issue fetch commands for new instructions. The same testing has confirmed that input-output intensive applications, such as word-processing or telecommunications won't benefit that much from the new microprocessor because the system is constantly waiting for keyboard or communications port input.

You might be wondering why the speed differential exists. The microprocessor is busy doing other thingsadding, subtracting, looping-while it is handling specific data addressing and calculation. Because it is, its resources are being spread through the system and they can't all be brought to bear for the ultimate speed increase.

Clock speed also seems to enter the picture. Running

FIG. 2: THE PREFETCH POINTER speeds up processing in the V20/V30 series by moving directly to the next instruction to be executed by the microcprocessor. This speeds things up because the micro always has the next instruction ready for its instruction pointer, which doesn't have to move around as much.

R-E Computer Admart

CALL NOW AND RESERVE YOUR SPACE

- $6 \times$ rate $\$ 800.00$ per each insertion.
- Reaches 239,312 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to:
Computer Admart, RADIO-ELECTRONICS, $500-\mathrm{B} \mathrm{Bi}$-County Blvd., Farmingdale, NY 11735.

CIRCLE 61 ON FREE INFORMATION CARD
COMPUTER MUSIC PROJECTS

BP173-Computer Music Projects shows how to use your home computer toproduce electronic music. Many circuits. Mostly jargon free. Send $\$ 6.95$ plus $\$ 1.75$ shipping to ELECTRONIC TECHNOLOGY TODAY INC., PO Box 240, Massapequa Park, New York 117620240.

Abstract

BP181-It is probable that 80% of dot-matrix printer users only ever use 20% of the features offered by their printers. This book will help you unlock the special features and capabilities that you probably don't even know exist. To order your copy send $\$ 6.95$ plus $\$ 1.50$ for shipping in the U.S. to Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240.

A Z-80 WORKSHOP MANUAL

BP112-Starting with a review of computer principles, this book describes typical machine-code instructions followed by a detailed description of the Z-80 instruction set. Assembly language program-
 ming is also discussed with examples. Z-80 hex machine-code and assembler instructions are given in tabular form, along with in-our connections for the Z-80 and te associated devices....Order your copy from Electronic Technology Today Inc., PO Box 240, Massapequa Park, NY 11762. Price is $\$ 6.95$ plus $\$ 1.00$ for shipping.
a standard IBM Personal Computer or close compatible at its standard 4.7 MHz imposes timing and performance constraints on its 8088 processor. Reports circulated in the IBM user community for years of hyper-speed functionality brought about simply by changing the clock chip from 4.7 MHz to 8 MHz , at which the 8088 is easily capable of operating.

Althoush the V20 is a capable performer, when you run standard IBM applications or languages that are meant to operate at 4.7 MHz , you're imposing the same fetters on microprocessor performance that you have on the IBM's 8088 and performance of the system will be degraded, even though you are using the V20N30. The 20 percent speed increase seems reasonable in light of this input.

Some users have complained about the speed shortfall and have questioned the capability of the V20N30. But, those users have come to expect too much. It's one of the oldest marketing ploys in the
microcomputer world, the specifications game, where the specifications are fantastic, but the performance doesn't match.

The solution, if you're considering the V20N30, is knowledge. If you realize that the speeds won't be superfast, but will be modestly improved, then you'll get what you expect from the $\$ 25$ to $\$ 30$ V20N30 chip.

Even a 20 percent performance increase is welcomed in some applications.

Finally, temperature and power usage are also important considerations and this is an area where the V20N30 shines. It generates a lot less heat and uses manifestly less power than the 8088 and because it does it proves a blessing for a system overtaxed by the number of add-in cards and devices that may be on the motherboard because there's less heat and power consumption for the system box to contend with. $\left\langle\boldsymbol{D}^{\prime}\right\rangle$

ALL ABOUT INTERFACING PART I

All you need to know about microcomputer interfacing

Jeff Holtzman

-Connecting peripheral devices such as printers, modems, and plotters to personal computers can be confusing. Many books dealing with the subject concentrate on connecting specific computers to specific peripherals.
We cannot guarantee that by absorbing the information presented here you will able to connect any computer to any peripheral device. Designers and manufacturers in the microcomputer world do their best to avoid any efforts at following standards.
What you will learn are the basic principles of both parallel and series interfaces, with hints on how to get two pieces of equipment talking to each other. As Count Basie used to say, let's try it "just one more once."

Serial versus parallel

Most microcomputers move data to and from peripheral devices in eight-bit bytes. There are two methods of moving a byte from one location to another. We can send all eight bits at once, or we can send one bit at a time. The one-bit-at-a-time approach is called serial data transmission, and the all-at-once approach is called parallel data transmission. Neither is better; each has advantages and disadvantages that must be weighed for each application.
If we send one bit at a time, we can get by with as few as two lines (signal and ground) if we only need one way communication, or three lines, if we need communications to and from a peripheral device. We'll talk about that later. But now, consider that for parallel transmission, we're going to need eight separate signal lines, plus a ground, and another one or two for synchronizing things so data won't be lost.

One advantage of parallel transmission is, since all bits are sent at once, transmission may occur at a higher speed than serial transmission. Also, the parallel circuitry is simpler and less expensive than serial circuitry. But the connecting cables are more expensive than serial cables, and there is less standardization of parallel connectors than serial connectors.
In another example, disk drives have (special) parallel interfaces that let them to take advantage of the speed advantage of the parallel approach. Some laboratory equipment and some low cost personal computers communicate with disk drives over (special) serial interfaces, but that is the exception.
Plotters and graphics printers usually operate with
parallel interfaces. The time to send-serially-the large amounts of data they require would be excessive.

Parallel transmission

The minimum parallel interface consists of ten signal lines and a ground. Frequently each active (nonground) line of a parallel interface is twisted together with-or run close by - a ground line. That provides immunity to electrical interference, and is one reason parallel cables often have so many leads.
Of the active lines, eight are for data, one is a strobe line, which indicates to the receiving device that it should take the data present on the data lines, one is a busy signal, which goes high to indicate that the receiving device is busy, and not to transmit any more data until it goes low, and the final signal is called $\overline{\text { AcK, }}$ which is (usually) a short, negative-going pulse from the receiving device that indicates the data has been accepted properly. A simple parallel interface might be wired as shown in Fig. 1. Note that the twisted-pair grounds are not shown. Note also that the Busy and $\overline{\mathrm{ACK}}$ lines come from the peripheral device, and that the strobe line goes to it.
The normal sequence for sending a byte of data over such an interface is as follows. Refer to the timins diagram in Fig. 2. The character in that figure is the letter " U," which has an ASCII value of 55 .
The computer monitors the busy line, waiting for the peripheral device to OK sending data. After the busy lines goes low, the computer places its data on the eight data lines and pulses the strobe line. That informs the peripheral device to grab the data. After it has taken the data, it pulses the $\overline{A C K}$ line, and turns the busy

FIG. 1-EACH ACTIVE SIGNAL may have a ground, implemented as a twisted pair, as a shield, or as a nearby wire in a multi-conductor ribbon cable.
line on, if necessary, while processing that byte of data. When it finishes doing that, the busy line goes low, and the process may be repeated. If you are interested in how fast a parallel device can accept data, try connecting an oscilloscope to the STROBE line of your computer.

The highest bit, bit 8, is low. ASCII encoded data requires seven bits, so the eighth bit may be ignored or used for other purposes. Some word processing programs use the eighth bit to mark end of words, and in data communications, the eighth bit is often used to indicate the parity of a character.

Parity indicates how many of the lower seven bits of a character are "on" (high). Our "U" has four "on" bits, and four is an even number. If our transmitting device were set up for even parity, bit eight of the " U " would be low, since the character already has four bits. If our transmitter were set up for odd parity, bit eight of the " U " would be high, in order to make a total of 5 "on" bits. A transmitted "V" (ASCII 56, decimal 96) would cause the opposite parity values.

Parity is used for error checking. When a device using parity checking receives a character with incorrect parity, it signals the driving software that an error has

FIG. 2-DATA TRANSMISSION in a parallel interface begins with the busy line going low. Data bits may be sent, followed by a strobe signal. Receipt of the character is acknowledged by sending the $\overline{A C K}$ line low. The character " U " is shown here.
occurred, which might then cause a request for the data to be re-transmitted. The most common circuitry allows parity to be set for odd, even, mark, space, or no parity. We have discussed the first two; mark and space simply force bit 8 high or low, respectively; and no parity simply ignores bit 8 . Unless you have a specific reason not to do so, choose the latter when setting up your equipment. Otherwise only seven bits of each byte will carry useful data.

The transmission process outlined could be applied to any parallel interface: one linking a computer and a printer, a computer and a laboratory instrument, a computer and another computer, etc. However, a typical parallel printer interface will have a number of additional signal lines, as shown in Fig. 3.

The PAPER END signal indicates when the printer is out of paper. The select line is generally high when the printer is "on-line"-that is, ready to receive data, and low when the ON-LINE switch has been pressed by the operator. The $1-$ PRIME signal is a reset line that will force the printer into some well-defined (by each particular printer manufacturer!) state. Finally, the fault line goes high when the printer is off-line, when it is out of paper or ribbon, or if some sort of transmission error has occurred.

It is important to understand that not every printer will have all of those signals, and some printers may have additional signals (such as a low-current +5 -volt source for powering peripheral devices such as a serial to parallel interface). It is also important to understand that little-if any-microcomputer software makes much use of any of the warning signals shown in Fig. 3. Usually, a printer suffering from a paper-out condition will cause the computer to lock up because the printer sends both the Busy and Paper End signals low, but software usually pays attention only to the Busy line. So your word-processing program might know that the printer is "busy" but not the reason for it.

A serial interface transmits bits of data one after the other. But not at random. When data is transmitted over a line conforming to the RS-232 standard, there are no timing restrictions on when individual bytes of data may be sent. However, each bit of a particular byte must be transmitted with strict attention to timing. Baud Rate refers to the speed at which transmission occurs, but not in a glib way.

Baud rate

First, let's define Baud Rate as the number of bits that may be transmitted per second. A Baud Rate of 300 means that 300 bits may be transmitted per second. That doesn't mean that 300 bits will necessarily be transmitted every second, though that's possible.

The term baud rate refers to the spacing between each bit of a single character, not the speed at which complete characters are transmitted. The way to find the time between each bit is take the inverse of the Baud Rate:

TC (sec) $=1 /$ Baud Rate

To find the time it takes to transmit a complete character, multiply TC by the number of bits per character.

FIG. 3-ADDITIONAL SIGNALS in a parallel interface. These signals are frequently unused by software.

In a 300 baud system, the amount of time from the start of one bit to the start of the next is $1 / 300$, or 3.33 msec . To determine the amount of time a character takes, multiply the number of bits per character by 3.33. How many bits does a character have? In the microcomputer world of the 1980s, the correct answer is usually eight. There are exceptions.

An 8-bit character is going to be 10 or 11 bits long! Every character has a start bit, and one or more stop bits. Most equipment operates with one stop bit; older equipment used two stop bits to give slow machines a little bit (no pun intended) of "recovery" time.

Transmission of a character begins with a start bit. The data bits follow (usually eight, but not always), and then one or two stop bits. Figure 4 shows the transmission of the " U " character with 1 start bit, 1 stop bit and 8 data bits. Note the time " t " between each bit; that is the value $1 /$ Baud rate.

If our 8-bit character has one start and one stop bit, that is a total of 10 bits. So the time to transmit one character at 300 baud is $10 * 3.33=33.3 \mathrm{msec}$.

How many characters can be transmitted in one second, if it takes 33.3 msec to transmit one character? Using a little algebra, we see that

1char Xchars
 $0.0333 \mathrm{sec} \quad 1.0 \mathrm{sec}$

So $X=1 * 1 / .0333=30$ chars $/ \mathrm{sec}$. We could have arrived at the same answer without the algebra-but doing it the hard way taught us something. Divide the baud rate by the number of bits per character. In our case, and in most you're likely to encounter, just divide

FIG. 4-SERIAL TRANSMISSION of data also begins with the Busy line going low. A " U " is being transmitted here. Note the time " t " between each bit.
the baud rate by ten.
$300 / 10=\mathbf{3 0}$ chars $/ \mathrm{sec}$.
What is the character/second rate of a 110-baud transmission?

If you came up with 11, you jumped the gun. You can't really answer the question without knowing the number of bits per character. We picked 110 baud because the old Teletype machines used that as their baud rate. And they used two stop bits-so the TTY has 11 bits/char, and $110 / 11=10 \mathrm{chars} / \mathrm{sec}$.

Here's another trick question: If characters are coming over a transmission line at 300 baud, does that mean that 30 characters come through every second? It doesn't, and that brings us to our next topic.

Transmission rate

Transmission rate may be defined as the number of characters flowing over a communications line per unit of time. The most important thing to realize is that there is no relationship between baud rate and transmission rate! You might have one computer dumping data at 300 Baud and another at 9600 Baud, and the latter might have a lower transmission rate than the former. How could that happen?

The 300 baud machine might be dumping 30 characters every second, the 9600 baud machine might only send a character once every 30 minutes. Remember a transmission rate of 300 Baud guarantees only that there will be a delay of 3.33 msec between each bit of a character.

That example illustrates the point. Higher baud rates aren't necessarily better. You could attach circuitry (such as a "printer buffer") to a 110-baud Teletype machine that would enable your computer to dump characters at 9600 baud. The TTY will be unable to print at the rate of 960 characters/second, so as soon as the buffer memory inside your interface filled up, your effective transmission rate would fall from the baud rate to near the actual printing speed of the TTY.

Adding a high-speed interface to a slow piece of equipment may still be an advantage. If the buffer memory could hold a fairly large number of characters, your computer might dump an entire document at high speed and go on to do something else while the buffer outputs data at a rate the printer can handle.

If you attach a buffer memory to your printer (or MODEM, for that matter), make sure you get a buffer with enough memory to make it cost effective. If you mostly print double-spaced documents under about 25 pages, a 64 K buffer should suffice. But with documents much longer than that, or with graphics dumps, you'll run up against the same problem. Once the buffer's memory is filled, transmission rate will

FIG. 5-RS-232 INTERFACES are commonly wired with only the signals shown here.

FIG. 6-TWO COMPUTERS connected via external MODEM's over the telephone lines are shown at a, and at b the computers are linked by internal MODEMs.
decrease drastically.
A practical RS-232 interface would appear as in Fig. 5. There are two data lines, a ground, and, like the parallel interface shown in Fig. 1, a busy line. There is no strobe line, as the start bit informs the receiving device that more is on the way. Neither is there an Ack. The busy line may perform the same function as in a parallel interface, as shwon in fig. 4, but there are other ways of indicating a busy condition.

Controlling transmission rate

Often we are unable to allow a computer to spew forth data at a transmission rate equal (or close to) the maximum value allowed by the baud rate- 30 chars/ sec , in the 300-baud system discussed here. The hardware on the receiving end must have a way of telling the transmitter "Hey-wait! I can't accept any more data right now."

There are two ways of doing that: With hardware and with software. With software we require two communication lines: One allowing data to flow from the transmitter to the receiver, and another allowing data to flow from the receiver to the transmitter.

What happens is that the transmitter sends data as fast as it can, while monitoring the line from the receiver for a special "wait" character that tells the transmitter not to send any more data. After receivins the "wait" character, the transmitter stops until it receives a "continue" character from the receiver. There are several such "protocols" in common use; you may have heard of ETX/ACK or X-OFF/X-ON. The first member of each pair simply represents the "wait" character, and the other, the "continue" character.

With hardware, a busy condition can be shown simply by the polarity of a signal line (high or low); the opposite polarity represents the "continue"condition. For example, low represents "Busy," high represents "continue."

Note that neither the hardware nor the software method is better than the other; each was developed to solve different problems. The software protocols for use with MODEMs and remotely operated printers where single-line communication links are a part of the system. A seismographic sensing unit might be located in a remote location, would be linked to a printer in a geological survey office by MODEM. A signal in addition to the transmit data and receive data lines that would distinguish between "wait" and "continue" conditions is hard to implement. Modern printers let you choose between software and hardware solutions, or both.

Historically, MODEMs were serial-in serial-out devices, as shown in Fig. 6a. There we see two computers connected through MODEMs via telephone lines. Each computer has a device labeled "P/S Converter," and each MODEM has a device labeled "S/ P Converter." That is the same device, and is called a UART (Universal Asynchronous Receiver Transmitter). Another device inside the MODEM (called an FSK, for Frequency Shift Keying encoder) converts the parallel binary data into audio tones that can be transmitted over telephone lines.

It is becoming common for MODEMs to be built right in the computer; some MODEMs are built on plus-in cards. Such MODEMs give cost advantages, as shown in Fig. 6b: external packaging can be eliminated, as can the power supply, two UARTs, and associated circuitry. But a stand-alone MODEM can be used with any computer, printer or other device with appropriate interfaces, whereas plus-in cards are limited to one specific machine.

To be continued in next month's issue

ANNUAL INDEX Radio Electronics Volume 57

and

Compltervigest Volume 3

Abbreviations: (AR)Antique Radio; (ARE) Ask Radio-Electronics; (C)Construction; (CD)ComputerDigest;
(COMC)Communications Corner; (COMPC)Computer Corner; (D)Department; (DB)Drawing Board; (DN)Designers Notebook; (E)Editorial; (ER)Equipment Report; (LTR)Letter; (NI)New Ideas; (R)Robotics; (SC)Service Clinic; (SQ)Service Questions; (SOSS)State Of Solid State; (STV)Satellite TV

Digital IC's, Designing With One Shots and Clocks (Carr)	Jan 7
Diodes, Zener, Sorting (ARE)	Nov 23
Diversity Reception, The Return of (COMC)) Feb 96
Drawing Board (D)(Grossblatt) Jan 102, Fe Apr 102,	Feb 112, Mar 88 , Jul 84, Aug 73, Sep 92, Dec 86
Bank Swilching	Aug 73
Memory Expansion Management, More	$\begin{aligned} & 02 \\ & 84 \end{aligned}$
ogram Corrections and Lab Set-up	
Control System Doesn't Smoke!	$\text { ec } 86$ $\text { in } 102$
Encoding and Decooding (Na	
Encoding and Decoding (Na	
LTIMETER listing under TEST	TEQUIPMENT)

F

4007, Versatile, the (Marston)
Sep 63
FET, High Power Stereo Amp (C) (Simpson
and Clarke)
Jun 63, Jul 56, Aug 57 ,
Fiber Optic Communications (COMC) May 90
Flasher, Sequential (Ni)
Dec 32
Fleetwood (SQ)
Aug 76
Flood Alarm (Ni)(Cook)
Apr 100
Fluorescent Lights (ARE)
Sep 12
Flyback
Shorted (SQ)
Aug 76
Jul 83
FM (see listing under RADIO)
Foreign Radio (SQ)
Sep 79
French Connection (SQ) Jul 83
Frequency and Period (ARE) Feb 12
Frequency Counter (see listing under TEST EQUIPMENT)
Function Generator (see listing under TEST EQUIPMENT)

G

Hi-Fi (see STEREO)
High Fidelity (see STEREO)
High Power FET Stereo Amp (C))(Simpson
and Clarke)
Jun 63, Jul 56, Augg 57 ,
LTR Nov 10 Home Security System, Build This (C)(LaMartina) Jan 49 Hot Resistors and Shorted Capacitors (SC) Apr 88 How To
Design Oscillator Circuits (Carr) Jul 65, Aug 54, Sep 58 ,
Oct 72, Nov 63, Dec 71
Make Kirlian Photographs
Make Kirlian Photographs
(lovine) May 43, LTR Sep 14, LTR Oct 22 Horizontal Sweep, No (SQ) Sep 79 Humidity Monitor (C)(Worley)
Huntron
Tracker, 2000 (ER) Feb 61

Ic

Everywhere, I See (SC)Making Measurements with (Trietliey)	
Packaging, A Revolution in (Byers)	59, LTR Oct 25
Temperature Sensors and More	Jan 99
Tester (see listing under TES	
Inexpensive Robotics Arms (R)	Jul 80
Inside the Telephone (Graf and Graf)	Oct 56, Nov 51
Interference, Curing Electromagnetic	
(LaViolette)	Jan 53, Feb 71
It's Kate-Bar the Doorl (STV)	Mar 81
J	
Joystick, Building a (ARE)	

M

Magnavox
Oct 85
E34018 (SQ)
Magnetic Phono Preamp (ARE)
Measurements with IC's, Making (Trietley) May 63
Measuring Speaker Impedance (ARE)
May 63
Apr 6
Medical Electronics
Healing with Electronics (Fish)
Apr 78
Melvilie Technologies
Phot-On-OHf (ER) (Fiction) Apr 34, LTR Oct 23 Memory (see listing under COMPUTER)
Microprocessor, The, A Decade of
Change A (Grossblatt)
Microwave (see listing under TEST EQUIPMENT)
Mini Music Synthesizer (C)
Apr 61
Feb 75
Antenna, VHF, JV-2X (ER) Jun 24
Misconvergence (SQ)
Morse Electrophonic
7900 (SQ)
Sep 79

Multimeter (see listing under TEST EQUIPMENT)
Music Synthesizer, Mini (C)
Jul 83
Music Synthesizer, Mini (C)
Mystery Computer Revealed ($)$)
Feb 75
Apr 81

Needs Tuning Capacitor (ARE) Apr 12
New
New
Ideas (D) \quad Feb 46, Mar 32, Apr 100, May 32, Jun 32, Aug 29
Nov 38, Dec 32

$\begin{array}{lr}\text { Crystal Timebase, An Inexpensive (Roher) } & \text { Feb } 46 \\ \text { Flood Alarm, Easy to Build (Cook) } & \text { Apr } 100\end{array}$
Flood Alarm, Easy to Build (Cook)
Robot
Robot
Eyes (Elils)
Lequential Feeking (Tavares)
Simple Circuit For
Simple Circuit Foils Car Thieves (Goers)
Telephone Answering System (Youkersur)

Products (D)
Jan 111, Feb 24, Mar 30
Apr 40, May 38, Jun 28
Jul 30, Aug 30, Sep 34,
World of Communications (SPECSECT) (Kobb) Sep 49 Nady Systems
Nady Systems
Wreless Speaker System (ER) Aug 27
Nifty Projects. Two (C)(Ooif)(Fiction) Apr 60

OK Industries
Function Generator, 205 (ER)
Jul 26
1.GHz Frequency Counter (C)(Huftt) Jul 47

Op Amps, New (SOSS) May 88
Oscillation (SQ)
Oscillator Circuits, How to Design (Cart)

Jul 65, Aug 54, Sep 58 Oct 72, Nov 63, Dec 7
Overioad Protection (SOSS)
P

dround Plane (ARE)	Apr 6
Parts for Crystal Radio (ARE)	Apr 12
Pest Repeller Questions (ARE)	May 6
Pet Robot (R)	Jun 74
Phono (see listing under STEREO)	
Phony Burglar Alarm (C)(Ringenberger)	Sep 44
Photographs. How to Make Kirlian (lovine) May 43, LTR Sep 22, LTR Oct 22	
Pocket Television Receivers (Blechman) Jul 39, Aug 47 Position Sensing (R)	
Power Line TV Interference (ARE) Supply (also see TEST EQUIPMENT) Supply, Simple (ARE) Switch, Remole-Controlled (C)(Cooper)	
	18
	$\begin{gathered} \text { May } 9 \\ \text { Aug } 43 \end{gathered}$

Swich, Remote-Controlled (C)(Cooper)
Printer (see listing under COMPUTER)
Printer (see listing under COMPUS ER)
Private Amateur Communications (COMMC
Private Amateur Communications (COMMC) Nov 80 Programmer, EPROM (C)(Sawkiw) Oct 61, Nov 55
Programs (see listing under COMPUTERS)
Projection Television (see listing under TELEVISION)
Prototyping Kit, Surface Mount, SMT, Vector (ER) Sep 32

R

Rabbit Systems
VCR Signal Distribution System (ER) Nov 26 Radar
Signal Detector (Hodowanec)
Speed-Gun Controller (C), (Stevens) Aug 39, LTR Sul 52
14 Radio (also see ANTIQUE RADIO)
Aircraft Radio on the FM Band (ARE)
Antenna, VHF, JV-2X. Mirage-KL.M (ER
Jul 10
May 24
$\begin{array}{ll}\text { Antenna, VHF, JV-2X. Mirage-KLM (ER) } & \text { May 24 } \\ \text { Communications (SPECSECT) } & \text { Sep 45 } \\ \text { From DC to Mirowav (Bemard) } & \text { Sep 45 } \\ \text { New World OI (Kobb) } & \text { Sep 49 }\end{array}$
Communications Corner
(D)(Friedman)
Feb 96, Mar 92, Apr 105
May 90 , Jul 89, Aug 81
Aug 84, Oct 92 , Nov 80
Arnateur Packet Switching
Broadband Amplifiers
Broadband Amplifiers
Closed Captioning
Communications Wars
Cross-Country Networking Sep 84
Diversity Reception, The Return of Feb 96
Fiber Optic
Spives and Cures
May 80
Crystal, Oid Time (C)(O'Brian)
Aug 81
Oct 54
Crystal, Oid Time (C)(O Brian) Oct 54
Early
Days Of, The (Clifford) Jul 61, Nov 60 Days Of. The (Clifford) Jui 61, Nov 60 FM
Notch Filter (ARE)
Reporting Shortwave Reception (ARE) Apr 14 26
Scanner
Sep 79
Beceiver
800XLT, Uniden-Bearcat (ER)
MX-7000, Regency (ER)
May 26, LTR Sep 14
Jul 23
$\begin{array}{lr}\text { Telephone Tester (ER) } & \text { Jul } 23 \\ \text { Trimming AM Auto (ARE) } & \text { Sep } 12\end{array}$
Radio-Electronics is on the Move (E)(Fenton) Feb 4
Raid On HBO, The (Sheets and Graf) Oct 47
RCA
RCA
CTC-71 (SQ)
CTC. 76 (SQ)
Sep 78
CTC-107 (SO)
Reader Input (SC)
Rectifiers, Precision (DN)
Red Hot Damper Tube (SO)
Regency
Scanner Receiver, MX-7000 (ER) May 26, LTR Sep 14 Scanner Receiver
Remote Control
Power Switch (C)(Cooper) Aug 43
Programmable, Control Central, G-E (ER)
Aug 43
Repairing (see SERVICING)
Replacing Transistors (SC)
Reporting Shortwave Reception (ARE)
Aug 75
Jan 26

Resistor
Burnt, Simple Cure for (SQ) Mar 85
Decade Box (see listing under TEST EQUIPMENT) Pevolution in IC Packaging, A (Byers) May 59, LTR Oct 24 Rhoades
Stereo Synthesizer, TE-600 Teledapter (ER) Feb 40 Robot (see ROBOTICS)
Robotics (D)(Robillard)
Jan 84, Feb 94, Apr 81 May 83, Jun 74, Jul 80 , Aug 71, Sep 74, Oct 82,

Brains	Dec 81 Feb 94
Heath's New Hero	May 83
Inexpensive Arms	Jut 80
More On Vision Systems	Dec 81
Mystery Computer Revealed	Apr 81
Pet	Jun 74
Position Sensing	Sep 74
Rovers Revisited	Oct 82
Simple Solid-State Vision	Nov 74
Tactile Sensing	Aug 71
Voice Recognition, and	Jan 84
(SPECSECT) (Robillard)	Mar 41
Personal (Robillard)	Mar 41
Your Own, Build (Robiliard)	Mar 47
Revolution, Where is (E)(Fenton)	Mar 4
Robot	
Eyes (NI)(Ellis)	Mar 32
Light Seeking (NI) (Tavares)	Nov 38
Personal, Buyer's Guide To (Robillard)	Mar 41
Pet (R)	Jun 74
R-E (C)(Sarns)	Dec 54
Your Own, Build (Robillard)	Mar 47
Rovers Revisited (R)	Oct 82

s
Sanyo

Scanner (see listing under RADIO)
Schmitt Triggers (DN)
Scope (aiso see listing under TEST EQUIPMENT)
Scope (aiso see listing under TEST EQUIPMENT)
Multimeter, DVM-638(ER)
Scrambling
Scrambing
Another View (E)
Update (STV)
Jul 12
Update (STV)
Woes (STV)
Screwdriver Serviceman (SC)
Sears
64-4173
Sensors, IC Temperature and more (SOSS)
Service Clinic (D)(Darr) Jan 108, Feb 110 Man 99
Service Clinic (D)(Darr) Jan 108, Feb 110, Mar
Apr 88, Jul 82, Aug

Customer Psychology	Sept
Dead-Set Servicing	Jul
Hot Resistors and Shorted Capacitors	Apr
I See IC's Everywhere	Feb 1
Repairing Oid TVs	Jan 10
Replacing Transistors	Aug
Screwdriver Serviceman	Oct
Signal Tracing	Dec
Voltage Regulators	

Service Questions (D)(Darr) Jan 109, Feb 111, Mar 85 Apr 90 , Jul 83, Aug 76,

Servicing
B.I.C. Turntables (L)

Compact Disc Players (Lenk) Jan 67, Feb 79 Mpr 73 Repairing Old TVs (SC)
Shrunken Video (SO)

Jan 109

Simple

Circuit Foils Car Thieves (Goers) Power Supply (ARE)

May 9, LTR Sep 22
Single
Chip SynciSweep Circuit (SOSS)
Jun 72
Gate Designs
Soar
Digital Multimeter, 3430 (ER)
Software (see listing under COMPUTER)
Sony KX-2501 (SQ) Misconvergence (SQ)
Static Convergence Static Convergence (SO
Walkman Amplifier (C)
Speaker (see listing under STEREO)
Speakerphone (see TELEPHONE)
Spikes and Cures (COMMC)
State of Solid State (D)(Scott) Jan 99, Mar 94. Apr 8
Solid State (D)(Scott) Jan 99, Mar 94, Apr 106,
Chop-Amps
Dual-Condition Sensing
IC Temperature Sensors and More
New Op Amps
Overvoltage Protection
Single-Chip Sync/Sweep Circuit
Temperature Alarm IC
STB Systems
Video Board, Chauffer (ER)

Stereo

Amplifier
High Power FET (C)(Simpson
and Clarke) Jun 63, Jul 56, Aug 57, Waikman (C) (ARE)
Audio Distortion Filter (ARE) (C)(Gorin) May 46, Jun 10
Click and Pop
Cleaner, Phot-On-Oft, Melville Apr 34, LTR Oct 24
Technologies (ER) Apr 34, LTR Oct 24
$\begin{aligned} & \text { Technologies (EA) } \\ & \text { Repairing Players (Lenk) Jan 67, Feb 79, Mar } 73 \\ & \text { Bit-By-Bit (Bernard) }\end{aligned} \quad$ Aug 63 Distortion Filter, Audio (ARE)
Phono Preamp, Magnetic (ARE)
-
May 89, Jun 72, Aug 79

Speaker
Enclosure, R-J (ARE) Headphones, and (AR) Measuring Impedance (ARE) System, Wireless, WTS-1. Nady (ER) Wiring Extension (ARE)
Stroboscope, Simple (ARE) Synthesizer, Teledapter TE-600, Rhoades (ER) Feb 40 Stroboscope (see listing under STEREO)
Stun Gun, Build This (C)(Grossblatt and lannini) \qquad Sep 41, LTR Nov 10
Surface Mount Technology, Prototyping Kit,
Vector (ER)
Sep 32
Switches, Transistor, All About (Cebik)

Feb 83

Switching, Bank (DB)
Aug 73
Sylvania
CC4152W (SQ)
Aug 76
Synthesizer (see MUSIC, also see STEREO.
also see TELEVISION)

T

Television (see listing under VIDEO, also
see SATELLITETV)
Temperature
Alarm IC (SOSS)
Sensors and more, IC (SOSS)
Apr 106
Test Equipment
Antique (AR)
Cable Tester
Aug 77
Simple (NI)(Doering)
Aug 29
May 22
Capacitance Leakage Tester May 51, LTR Sep 22 (C)(McClellan) May 51, LTR Sep 22
Continuity Tester, Latching (C)(Knight) \quad Nov 49 Frequency Counter
Frequency Counter
All About (Martin) Apr 69, May 71 $\begin{array}{rr}12-\mathrm{GHz} \text { (C) (Huft) } & \text { Apr 69, May } 74 \\ \text { WD-757, VIZ (ER) } & \text { Jul } 47 \\ \text { Jun } 20\end{array}$
Fuction Generator
205. OK Machine (ER)

Jul 26
IC Tester, TTL, B\&K (ER)
Aug 22
Logic
Analyzer, 16-Channel, 318
Tektronix (ER)
Pulser, Circuitmate LP25, Beckman (ER)
Microwave (STV)

Feb 28
Dec 24
Dec 28

Computeritgest Volume 3 January 1986 - December 1986

Abbreviations: (C)Construction; (D)Department; (E) Editorial; (L)Letter; (ER)Equipment Review; (SR)Software Review

Satellite TV

Hacking Videocipher

PARDON ME IF I＇M REPEATING OLD news，but most of the major satel－ lite signals are being broadcast in scrambled form．That scrambling has caused significant problems in the TVRO industry．For example， sales are off by more than half，and everyone from OEM to dealer is hurting．Some people are hurting badly enough that they are attempt－ ing to do something about scram－ bling－they＇re trying to beat it．

Black－box solutions abound al－ ready，and there is an active under－ ground（and middleground）in which descrambling devices and information are being distributed． However，until quite recently， most claims about successful de－ scrambling were fanciful flights of creative copywriting．But no more．

Oak and M／A－Com

Two unrelated scrambling sys－ tems are being used in the U．S． and Canada this year．One is the product of Oak Industries；they call their system the ORION（Oak Restricted Information and Operation Network）．Two versions of their decoders are available； one is for cable－systems operators and one is for the home market． The home－style decoder for that system is called the ORION P ；the P stands for Personal．

In the U．S．，we have the M／A－ Com Videocipher system，which has been widely adopted by cable programmers such as HBO，CNN， and more than a dozen others． （Even The Disney Channel is scrambling now．）There are also two versions of Videocipher；the $V C-2$ ，which is for the cable peo－ ple，and the VC－2000，which is for home use．

Descrambling both Oak＇s and M／A－Com＇s video signals was child＇s play．In fact，at least one home－style receiver manufactured by Arunta Engineering（ 3111 E ． Thomas Rd．，Phoenix，AZ 85016） decodes that type of video straight out of the box．It may be coinci－ dental，but Arunta＇s receiver was designed and marketed before Videocipher took off．But the fact is that it does produce perfect pic－ tures from both types of signals．

The audio has been a greater

Interested in TVRO？

For nearly two years Bob Cooper has provided a no－charge kit of printed mate－ rials that describes the challenges of and opportunities in selling TVRO systems to－ day．With the present intense interest in scrambling systems，Coop＇s CSD has made available a new no－charge service． The SCRAMBLE FAX hotline is a 24 － hour－per－day telephone service that provides accurate，detailed，and hard－to－ find facts concerning the changeover to scrambling in the satellite communica－ tions industry．Information describing sat－ ellite receivers tested for scrambling compatibility，sources for authorized de－ scramblers，wholesale rates of scram－ bling equipment and services－all are provided on the SCRAMBLE FAX hotline． There is no charge for that service，other than your long－distance telephone ex－ penses．Simply dial（305） $771-0575$ for a concise and timely three－minute capsule report that covers the latest in scrambling news．
challenge．The first breakthrough comes from the Canadian firm Westar Technologies（2 Bloor Street West，Suite 100，Toronto， Ontario，Canada M4W 3E2）．West－ ar has introduced an IC，shown in Fig．1，that contains complete de－ scrambling circuitry for the Oak system－both video and audio－ on a 40 －pin carrier．
In mid August that IC costs about $\$ 250$ ，and the ORION P de－ coders are selling for approx－ imately the same price．So，for $\$ 500$ or so，you can have access to everything scrambled by the Oak system．

Needless to say，there are sever－ al legal problems here，because neither U．S．nor Canadian au－ thorities condone descrambling signals that are intended only for authorized use．

The next breakthrough is immi－ nent，if it has not been attained by the time this column reaches print．It involves the Videocipher system，which until now has been invincible to hacking attempts．
The Oak system converts audio to digital form and then hides it in the video signal．The M／A－Com system uses a similar technology， but it also encrypts the audio ac－ cording to a Governmental se－ curity standard called DES（Digital Encryption Sandard）．To recover the Videocipher audio，one must first extract the digital data and then decrypt it according to a key．
The M／A－Com system might have been invincible were it not for design＂features＂of the Videocipher system．What really compromises the system is that a master decoding key is transmit－ ted along with the encoded audio．

Therefore the key to unlock scrambling the system is actually there in the data stream. The key itself is also encrypted, but it is nonetheless present.
Finding a way to decode that key is a considerable challenge, and it has attracted some of the most talented engineers, software hackers, and cryptanalysts in the world. Like Mount Everest, it is there; and, for the same reason that some climb the mountain, others are slowly revealing the se-
crets of Videocipher. There has been significant progress to date; much more will have been accomplished by the time you read this report.

For example, it was determined at an early stage that integrated circuit U7 in the Videocipher unit holds some of the decrypting keys. Getting inside that IC to recover the data hidden there was a trick, since removing it from the circuit killed it. To get inside, researchers used a microscopic drill

SCRAMBLE-FAX SCRAMBLE-FAX

from Bob Cooper

WESTAR Communications/Westcom, the Toronto area alleged manufacturer of 'pirate decoders' for HBO/Showtime and other Videocipher type scrambled services reportedly has been sold to a new
group of investors; all Canadian. The firm has been offering their piratetype decoder unit for $\$ 500$ (US) for several weeks claiming it decodes all Videocipher scrambled video plus audio signals. Attempts to locate the firm other than through their 800 telephone number (1-800/2655675) typically meet with failure and the firm is quick to explain that it would be inappropriate for them to identify their actual street address Ontario, and 416/842-2877 as their non- -00 telco).

EACH issue of SCRAMBLE-FAX is sent to you via AIR-mail the very day your order is entered. Simply call 305/771-0505 to order your copy (have VISA or Mastercharge card handy) or write for your copy enclosing payment for $\$ 10$ (US funds) to the address shown below. PLUS each issue is 'supported' by a SCRAMBLE-FAX 'Hotline' telephone updating service.

DIAL 305/771-0575 anytime for a complete update on the status of scrambling. 'Hotline' recorded reports are provided by Bob Cooper as an 'instant update' to SCRAMBLE-FAX and carry fast-breaking news items of interest to the scrambling scene. But have your notebook and pen handy; each 'Hotline' report contains many telephone numbers and addresses you will want to retain!

SCRAMBLE-FAX by bob Cooper

305/771-0505 or for free 'Hotline' service, 305/771-0575. To order by mail, send check/money order or enclose VISA/Mastercharge number and expiration date: CSD Magazine, P.O. Box 100858, Ft. Lauderdale, FI. 33310
to enter the IC and reach a special location where the silicon chip is bonded to the carrier. A small drop of mercury was then placed in the microscopic hole to allow an electrical connection to that point. Signals within the IC could then be analyzed. All of that was accomplished while the chip was fired up and operating! Needless to say, several of the IC's were destroyed during that process.

Data was extracted and delivered to software analysts who were assigned the task of descrambling the programming secrets. Once the program is deciphered, the next trick is to write a new program that gets around M/A-Com's program.

The upshot of this is that we expect to see Videocipher clones soon. And since the hackers also expect that some of their clones will ultimately end up at M/A-Com, a clever "auto-cloning" technique is being studied; it will allow the clone IC's to "refresh" their decoding keys by continually analyzing the data stream fed via satellite that we now know is present.

Legalities

It is not illegal to take Videocipher apart to learn how it works. However, distributing hardware that does so, or even information describing how to do so may be illegal.

Many of those working on cracking Videocipher have no commercial interest in selling or in profiting in any way from cracking Videocipher; when the task is accomplished they will simply back out and leave any possible commercial exploitation and distribution to others. Rest assured that such exploitation will take place.

Needless to say, the people at Oak and M/A-Com are unhappy about any unauthorized descrambling. So lawsuits are probable. Even those who provide detailed decoder/hacking information in print run the risk of being sued. As in many other facets of American life, the lawyers will make lots of bucks while the public struggles to understand the how's and why's of what is happening, and tries to figure out how to react to the underground distribution of information and hardware.

ROBOTICS

Experimental robot vision

MARK J．ROBILLARD， ROBOTICS EDITOR

LAST TIME WE PRESENTED THE CON－ struction details of a simple pho－ tocell－based vision sensor．To conclude the presentation，this time we＇ll show you how to con－ nect it to a microcomputer，and then we＇ll discuss a few software algorithms that demonstrate how to use it．

The sensor consists of nine pho－ tocells．For a computer to be able to read the analog resistance of each photocell，that resistance must be converted into the digital language the computer under－ stands．So we must use an ADC （Analog－to－Digital Converter）． When a photocell is connected between the positive supply volt－ age and a resistor that is grounded
on the opposite end，the pair acts as a variable voltage divider．The divider is variable because the re－ sistance of the photocell changes depending on the amount of light that reaches its active surface． When you connect the output of the divider circuit to the input of an ADC，a digital representation of the voltage dropped by the pho－ tocell may be read．

It would be inconvenient and expensive to connect a single ADC to each of the nine sensors in our vision unit．Fortunately，however， National Semiconductor has an IC （the ADC0816）that includes not only an ADC，but also a 16－channel analog multiplexer that allows us to monitor all nine photocells（and

FIG． 1

FIG． 2
seven other analog inputs，if desir－ ed）without multiplying costs nine times．
Figure 1 shows the circuit details of the sensor interface．In addition to the sixteen analog inputs，the ADC0816 has four address inputs that allow you to select which of the sixteen inputs you want to read．Further，the circuit has sever－ al control lines that are used to select various operations．We＇ll
discuss each of the control lines below.

If your computer has a built-in eight-bit parallel interface, you can probably use the circuit directly as shown. Otherwise, you'll have to add some external circuitry. One way of connecting the ADC0816 to an 8-bit computer system is as follows.

The computer's data bus (or eight-bit I/O bus) is connected directly to the IC's 3 -state data outputs (pins 24-31). You could AND the computer's READ signal with a decoded port address and apply that signal to the output enable input (pin 21) in order to read a value from the ADC0816.

Selecting a channel is done by setting up the four address lines of the ADC0816 and then strobing the address into the ALE input (pin 32) via another decoded output anded with the computer's write line. The ADC's address lines can be connected directly to the loworder address lines of the control computer.

Last, the start input (pin 16) is used to start the conversion pro-

AN ENDING, A BEGINNING

This marks the 19th and final installment of Mr. Robillard's Robotics column. We'll miss Mark (who will contribute an occasional feature article), but we're happy to announce a new series of articles that includes complete details for building, operating, and experimenting with a personal robot. The new series begins in this issue and will continue for many months, as we continue keeping you up to date on the latest developments in the fascinating field of personal robotics.

R-E
cess. You could drive that input with another decoded output port and-ed with the computer's WRITE line.
Because the ADC works much slower than your computer, you cannot simply select a channel, send a "start" command, and then read the data. The ADC must sample the input and then convert it to digital form. The ADC0816 can take as long as 116μ s to complete the conversion. To alert the computer when the conversion is done, the IC has a special end-of-conVERSION output (pin 13) that goes
high when a digital representation of the analog input may be read. You can monitor pin 13 by AND-ing a decoded I/O port address with your computer's read line. Alternatively, you may want to connect pin 13 to an interrupt input; doing so would allow your computer to do other things while the ADC is working.

Figure 2 outlines the basic algorithm for scanning the nine-element sensor. First we select analog channel one. Then the start signal is activated. Then the computer goes into a loop and monitors the end-of-conversion output. When that signal goes high, the output buffer is read, and its value is stored in a nine-byte table for analysis later. The program loops to select the next channel (i.e., the next sensor element) and executes the same sequence of operations. When all sensors have been read, the algorithm is finished.

After reading in the data, it must be analyzed. It would simplify analysis if each sensor returned a value of 1 for light areas and a value of 0 for dark areas. Then the table

Copies of articles from this publication are now available from the UMI Article Clearinghouse.

For more information about the Clearinghouse, please fill out and mail back the coupon below.

Yes! I would like to know more about UMI Article Clearinghouse. I am interested in electronic ordering through the following system(s):
Name-
Title
Institution/Company
Department
Address
City
Phone (__)
Mail to: University Microfilms International
300 North Zeeb Road, Box 91 Ann Arbor, MI 48106
of bytes could be compared with a set of previously－stored templates． The program would interpret the object as being the one with the closest match．

However，things don＇t work quite so simply in the real world． In fact，the circuit shown here is so sensitive that，instead of getting two distinct values that represent light and dark，you＇ll be getting readings with 256 distinct values． Areas of your target that appear to be the same will actually register tremendous differences．

In order to eliminate most of that＂clutter，＂an auto－sensitiza－ tion adjustment must be made． What we must do is to trick the circuit into being less sensitive． One way of doing so is with a threshold adjustment．Looking back at the circuit in Fig．1，notice the resistive voltage divider con－ nected to pin $19\left(\mathrm{~V}_{\text {REF }}\right)$ of the ADC． All converted values are compared to the value at that pin．By varying the reference，you can adjust the sensitivity of the circuit．

You could use a DAC（Digital－to－ Analog Converter）to perform the auto－focus．Connect the digital in－ puts of the DAC to a separate out－ put port，and the analog output of the DAC to the reference input of the ADC．Then，by placing a black and white cross（or some other shape）under the sensor，have the computer read the ADC．If the sensors under the black areas don＇t read similarly，have the com－ puter change the reference volt－ age via the DAC converter．Adjust the reference until the output reads the way you want it to．
Also，you could calibrate the sensor manually using a potenti－ ometer and some sort of program that outputs the values to the screen．The value of the automatic circuit，though，is that the com－ puter can calibrate itself at any time．
I have found the sensor to be great at picking out brightly col－ ored symbols on a dark block．In addition，the sensor reads well at a distance of one inch above the tar－ get object．As discussed last time， use a flash from an old camera to illuminate the area evenly．And be sure that the duration of the flash is at least 200μ s to compensate for the conversion time．

R－E

HOME SECURITY SYSTEMS

You can help us raise the colorecta cancercure rate．
When detected early；the cure rate for colorectal cancer is very high．That＇s why we urge regular checkups for men and women 50 and over： Warning signs are a change in bowel habits． blood in the stool．
Your doctor can perform the digital and procto exams and you take care of the stool blood test at home

Checkup Guidelines for
men and women over 50 men and women over 50
without symptoms －digital exam annuall －stool blood test annually －procto exam every 3 to 5 years after 2 negatis
ecas 1 yer tests 1 year apart．

No one faces sanceralone WAMERICAN CANCER SOCIETY

CIRCLE 89 ON FREE INFORMATION CARD

83

Antioue

 Radios
Reader letters, filament checker

DURING THE PAST TWO YEARS I HAVE made many references to reader correspondence. It is gratifying to know that so many are interested in the history of radio, which is probably the most important scientific discovery of all time. At least it's the most fascinating, especially to readers of this column.

Writing this column has taught me a lot. Much of my knowledge comes out of the research I must do to get the column out, but more comes from information contained in readers' letters. I have heard from some very knowledgeable readers who have firsthand information on radio history. In fact, many have personal recollections of the developing days of radio. First broadcasts, homemade equipment, and early receivers are still fresh in the minds of many readers of this column.

While many letters share information, many others contain questions. Many of the latter cause me to do considerable research. Often readers ask about sets of which only a few were manufactured, and which have long been forgotten. Sometimes it's hard to believe that a reader actually has one. Of course, I'd like to shows photos of all those forgotten radios, but there simply isn't room to do so.

Letters

Now let's get to the letters. Maybe we can all learn something from the problems experienced by these readers. Or perhaps readers can help each other.

Daniel Nevels (11836 Alamo, Baton Rouge, LA 70818) needs the glass dial cover for a Zenith Model

65556 radio. Dan mentioned that he could get the set repaired for $\$ 300.00$, and that it is similar to the Zenith pictured in the June 1985 column. Dan, if you're referring to the Zenith console with the veneer problem, that's not the only thing wrong with it. There is also the matter of a burnt-out power transformer. You can have the whole thing for $\$ 300.00$. Actually, if you didn't live so far from me, you could get the whole set for $\$ 30.00$. If anyone in Dan's area can help, drop him a line.

Many antique-radio restorers find their sets complete except for one small but hard-to-locate part. Usually it's an accessory like an escutcheon, a knob, a cabinet, or a piece of curved glass. Often, if you have patience, you can fabricate a missing part from commonly available materials. For example, you can turn (or carve) a piece of dowel rod to simulate a knob. Other materials that come in handy include veneer, masonite, and stiff, clear plastic such as toys are packaged in. The plastic can be used to replace missing glass. Sometimes it's even worthwhile to buy an item just for the packaging.

Cliff Priddle, (P. O. Box 725, North Bend, OR 97459) is interested in crystal sets. He would like to obtain old parts. Cliff, my old tube sets keep me so busy I haven't had time to get into crystal sets. However, one company advises me that they can supply crys-tal-radio parts and information. Send an SASE to MIDCO (P.O. Box 2288, Hollywood, FL 33022). (Also check the Classified Advertisements in the back of the maga-zine.-Editor)

RICHARD D. FITCH, CONTRIBUTING EDITOR

Here's an interesting letter for antique collectors who haven't located a suitable set yet, or for those who would like to add to their collection. Victor Jackman (230 April Court, North Huntington, PA 15642) has a fine collectable to sell. It was made by International Radio Inc., of Ann Arbor, MI and has serial No. 2914. I have some information on International Radio, but their sets are listed by model number. If anyone wants more information about this collectable, drop Vic a line.

Another interesting collectable is an Ultradyne Model L-2. It's a TRF with tubes, circuit, and cabinet. For more info contact Herb Henry (331 Elliot Road, Ft. Walton Beach, FL 32542.)

I have searched my files but am unable to help Eugene K. Warner (522 Weiman Street, Ridgecrest, CA 93555.) He has a small radio with no tubes. Also, no tube diagram or manufacturer's name or model number. It appears to use both a line-cord resistor and a ballast tube. The only clues are on the dial, which contains the image of a four-engine prop transport airplane and the name Clipper. The radio may be from the thirties.

I wish I could share the set of color photos sent in by Allie C. Lingo of Pierks, Arkansas. They show a classic southwestern tester and some equally classic radios.

While discussing photos, I have to mention the photo of a World War 1 military receiver sent in by Charles W. Dold of New Smyrna Beach, FL. Mr. Dold responded to my promise to discuss WW 1 equipment in a future issue. However, my visits to military mu-

BUILD YOUR OWN ANTIQUE－ RADIO TUBE－FILAMENT CHECKER

This month，I am going to show you how to build a simple but useful piece of test equipment．That is a tube－filament tester． I＇ve always found such a device very valu－ able in troubleshooting old radios．

While the much－altered filament tester shown in Fig． 1 is about 40 years old，I didn＇t invent it．Commercial versions were available for years before I built mine．Be－ sides testing tube filaments you can also use it to test light bulbs，home and auto fuses，etc．

Even if you already own an emission－ type tube tester，there is an advantage to having a simple filament checker：it＇s

FIG． 1
much easier to use because you don＇t have to set nine switches，three dials，and several pushbuttons，not to mention tube warm－up time．Besides，many late－model tube testers don＇t have sockets for the antique tubes we are interested in．

As shown in Fig．2，the filament checker has sockets that are pre－wired to accept the most popular types of tubes，and a pair of test leads that allow you to check any tube with non－standard filament con－ nections or a non－standard base．The box has special clamps to hold that type of tube in place while you connect the test leads．

The circuit works like this．The battery， lamp and the tube under test are all con－ nected in series through the on／off switch． When you close the switch，the lamp will light if the filament is good．Otherwise it＇s bad．

The box shown in the photo measures $9^{\prime \prime} \times 12^{\prime \prime} \times 4^{\prime \prime}$ ．The two plastic boxes affixed to the sides of the checker can serve as＂in＂and＂out＂boxes when you＇re testing a batch of tubes．Place tested－ good tubes in the out box，and simply discard any bad tubes．

You can use any low－voltage low－cur－ rent lightbulb for LMP1，such as a number 48 or 49 ，or even a number 14，which is rated at 2.47 volts at 300 mA ．The toggle switch isn＇t really necessary．I just like to have a switch on all electrical equipment to make sure that it is off when I＇m not using it．

R－E

FIG． 2
seums failed to give me enough material for a complete column． But if I can obtain enough informa－ tion，I will include it in a column．

Haves and needs

A．B．Nacy（1421 Retallack Street， Regina，Canada S4T 2J3）has an an－
tique Arvin for sale．James Lindsay （85 Circuit Avenue，Weymouth， MA 02188）needs a complete speaker for a RCA Victor Model 87 T．And David Fentem（704 Emerald Forrest Circle，Lawrence，GA 30245）needs all major parts for an old Silvertone console．

Our guaranteed savings plan．

Fluke 70 Series Analog／Digital multi－ meters are like money in the bank．Buy one，and youre guaranteed to save both time and money．

Money，because you get longer battery life and longer warranty coverage－ 3 years vs． 1 year or less on others．

And time，because 70 Series meters are easier to operate and have more automatic measurement features．

So before buying any meter，look beyond the sticker price．And take a closer look at the new low－priced $\$ 79$ Fluke 73 ，the $\$ 99$ Fluke 75 ，and the deluxe $\$ 139$ Fluke 77．In the long run，they＇ll cost less，and give higher performance，too．
And that，you can bank on．
For a free brochure，and your nearest distrib－ utor，call toll－free 1－800－227－3800，ext． 229.
FROM THE WORLD LEADER IN DIGITAL MULTIMETERS．

© 1985 Fluke
CIRCLE 121 ON FREE INFORMATION CARD

Drawing BOARD

A remote-control system

IF YOU're a Regular reader of this column, there's one thing you should realize by now-I'm a firm believer in a systematic approach to design. A sure road to brain damage is trying to design something without analyzing the prob-
lem first. The subject we're going to start discussing this month-remote control-is one that requires a systematic approach. There's just no way of doing a sucessful design without planning the whole system out on paper beforehand.

FIG. 1

FIG. 2

ROBERT GROSSBLATT, CIRCUITS EDITOR

A remote-control system is more complex than many of the other circuits we've looked at in this column. The degree of complexity is, of course, directly related to how much you want the circuit to do for you. But even if you only want your remote controller to switch your TV on and off from your armchair, the first step is to list the overall specifications of your control system. Our system's specifications are as follows:

1. The transmitter will be battery powered.
2. The transmission medium will be infrared light.
3. The circuit will be able to control at least 10 devices.
4. Standard parts will be used wherever possible.
5. The receiver will be as noiseimmune as possible.

If you think about those specifications for a moment, you'll see that the remote-control system is really a combination of two different circuits, each of which has several subsections. The two main sections are the transmitter, shown in Fig. 1-a, and the receiver, shown in Fig. 1-b. Each of the main sections is a complete circuit in itself, and each must be designed separately before the whole thing can be assembled. But before we can even start thinking about putting the electronics together, we must get an overview of the system's operation.

Keyboard and encoder circuits are nothing new. We've designed them several times in past columns. Basically, we're looking for something that will translate a keypress into a unique binary code and place that code on a data bus.

After the code has been gener－ ated，we must modulate it before we send it on to the transmitter． The modulator（and the corre－ sponding demodulator in the re－ ceiver）are both new circuits in this column．

The modulator must take the data from the keyboard and con－ vert it to whatever is needed by our transmission circuitry．There are many schemes for accomplish－ ing that．For example，the data can be encoded as FSK（Frequency－ Shift Keying），AM（Amplitude Modulation），or DTMF（Dual Tone Multi－Frequency）．We all know the latter from its use in Touch－Tone dialing．

After the data has been convert－ ed by the modulator，it is passed on to the transmitter．For a trans－ mission medium we could use anything from a pair of twisted wires to ultrasonic sound，but we＇ll use infrared light．When we begin that part of the design，you＇ll see that it＇s very easy to change from one transmission medium to another．I＇m using infrared be－ cause ultrasonic waves make my teeth hurt．
At the receiving end，the signal is detected，conditioned，and then passed on to the demodulator where it is converted back to its original binary form．Then the de－ coder turns on the selected out－ put．

Now that we have an overall idea of how the circuit works，let＇s get started by looking at the transmit－ ter＇s keyboard encoder．

From keypress to code

Figure 2 shows the schematic of the keyboard encoder we＇ll use for our remote－control system． The 4514 is a 4 －to 16 －line decoder with normally low outputs．When a 4－bit binary word is presented at its $A-D$ inputs，the corresponding decoded 0－15 output goes high．Pin 1 is an active－high input enable（IE）， and pin 23 is an active－low output enable（OE）control．In normal op－ eration，pin 1 must be high and pin 23 must be low．The 4520 is a dual synchronous 4－bit binary counter． We＇ve used it so often that you should be able to recite its pinout in your sleep．

The operation of the keyboard circuit is straightforward．One of
the 4520＇s counters is fed with a clock that causes the counter to cycle through its full 4－bit count（ 0 to 15 ）repetitively．The binary in－ puts of the 4514 are tied to the 4520＇s outputs，thereby causing its 16 outputs to go high one at a time in turn．Because $\overline{O E}($ pin 23）is tied to ground，the 4514＇s outputs are always enabled．The input enable （pin 1），however，is connected to the common terminal of switches S1－S16 through an inverter．As long as no key is pressed，resistor R1 holds that point low，so the output of the inverter is high，so the 4514 continues to cycle through its vari－ ous states．
When a key is pressed，however， the outputs continue to cycle until the output corresponding to that key goes high．When that hap－ pens，the inverter＇s input goes high，so its output goes low．That disables the 4514 and the 4520 ． Therefore，the binary output of the 4520 is frozen on the data bus．
There is one special feature of the circuit that＇s not immediately apparent．You＇ll notice that nothing is done to debounce the switches．If you trace through the operation of the circuit carefully， you＇ll see that it＇s not necessary－ the circuit is inherently bounce－ free．If we happen to produce a bounce when the switch is closed， all that happens is that the inputs stay enabled and the 4514 con－ tinues to cycle through another full count．But by using the output of the inverter to strobe data into the following stage（which is what we＇ll do next time），we can ignore the additional pulses．

To see how the circuit works， breadboard it and feed it a clock of some sort－a 555 circuit will do just fine for test purposes．If you slow the clock down to a few Hertz，you＇ll be able to watch the circuit operate．Slowing the clock and watching the outputs will do more to help you understand how the circuit works than ten pages of written explanations．

The next thing we must do is take the 4－bit binary code from the keyboard and encode it for trans－ mission．But that is a subject for next time．In case you＇re inter－ ested we＇ll be using the S2579 DTMF Generator from American Microsystems Inc．

R－E

OVER 2，000 TUBE TYPES IN－STOCK

$\mathbf{7 8 \%}-90 \%$ off list

Plus thousands of electronic parts including

－VCR／Cable Accessories
－Telephone Accessories
－Audio Accessories
－Computer Accessories
－Capacitors，Resistors，Diodes，etc．
－Speakers
－Many other items

CIRCLE 185 ON FREE INFORMATION CARD

No costly school．No commuting to class． The Original Home－Study course pre－ pares you for the＂FCC Commercial Radio－ telephone License＂．This valuable license is your＂ticket＂to thousands of exciting jobs in Communications，Radio－TV，Micro－ wave．Computers，Radar，Avonics and more！You don＇t need a college degree to qualify，but you do need an FCC License．
No Need to Quit Your Job or Go To School This proven course is easy，fast and low cost！GUARANTEED PASS－You get your FCC License or money refunded．Send for FREE facts now．MAIL COUPON TODAY！

COMMAND PRODUCTIONS
FCC LICENSE TRAINING，Dept． 90 P．O．Box 2223，San Francisco，CA 94126 Please rush FREE details immediately！ name
ADDRESS

Service Clinic

Oughta be ain't is!

THE FIRST THING THING TO DO WITH any set that looks totally dead is to start measuring DC voltages. When you find one that looks incorrect, try to find a logical reason for it: look at nearby components that may be bad (open or shorted) and at other sections of the circuit that could affect the one with problems.

An incorrect or missing DC voltage is often the best clue we have to a bad stage. Always check DC signals first: No volts, no work! However, you can't use DC levels as your only source of troubleshooting information; some parts can stop an audio or video signal cold without having much effect on the DC voltages. If you find no odd-looking DC levels, you'll have to try another tech-nique-signal tracing, for example.

If you've got decent service literature, most likely it has scope photos illustrating the shape and amplitude of signals at various points in the circuit. Try feeding a test signal (that approximates what you see in the literature) into the input of the circuit, and see if the output looks anything at all like what it should.

For example, take a look at the horizontal output stage in Fig. 1. You might try feeding a 10 -volt p-p sinewave into D1. Then look at the collector of Q 1 . If you don't see something that resembles the 170 volt $p-p$ signal shown in the schematic, Q1 may be bad. On the other hand, if the test signal gets through, that part of the circuit probably works correctly, so you can go on and test other stages.

By following that process in a

FIG. 1
logical manner, you'll eliminate possible sources of trouble one by one and eventually arrive at the real source of trouble.

Of course there are special things to look out for: coupling capacitors, for example. If one develops an open, it can stop the signal dead in its tracks, but the DC voltages will often be affected little, if at all. And that's when we've got to resort to signal tracing.

Always be careful with little things like coupling capacitors that look good. Don't assume that those capacitors never go bad. I used to have a bad habit of doing just that. That is, until the day I found one that had developed an open!

So never get into the bad habit of assuming any part is good without thoroughly checking it; always test everything. I used to make assumptions until one day I had a lot of trouble figuring out what was
wrong with several different sets. So always keep that most valuable asset of a service technician: the completely open mind! In other words, suspect everything in a circuit until you find out who the real culprit is! And don't be too sure then!

Here's an example of how making assumptions can lead you astray. I had a set that was completely dead: no video, no audio, not even any noise. There was one big solder joint on a terminal right in the middle of the chassis. It had a large blob of solder on it, and it looked like a perfectly good joint. I thrashed around in that circuit until I finally got a hold of myself, started signal-tracing, and, behold, the signal came right up to that "perfect" solder joint where it stopped!

I melted the joint, and the moment my iron touched it, it went up in a little puff of smoke! It wasn't solder at all, but a big blob
of what is called＂liquid solder．＂ Obviously there wasn＇t much con－ tinuity in that joint．Hardened ace－ tate cement doesn＇t conduct electricity very well．So I soldered that joint in the usual way，and the set began working right away．

The moral is that，if you never take anything for granted，you＇ll have fewer servicing headaches． Never assume that a solder joint is good．Check the dad－burned thing with an ohmmeter just to make sure．You＇ll find many pit－ falls of that sort；don＇t let＇em throw you．When tracing a signal that suddenly stops，check every－ thing in the immediate vicinity and you＇ll often find something that will surprise you．

Shop bookkeeping

One thing we seldom talk about is how to keep track of the amount of work that has been done for each customer，and which parts went into his set．One way to keep track of things is by keeping the parts we＇ve pulled out for replace－ ment in a separate pile for each customer．That way，when the job is over，we can just go through the pile and charge the customer ac－ cordingly．That makes bookkeep－ ing（one of our favorite tasks！） much easier．And if you＇re your own bookkeeper，as most of us are，it＇s well worth spending a little time getting and staying organized；you could lose a lot of money if you＇re not careful．

Another thing that can help， when making out the bill，is to write down each part you in－ stalled，and its function（for exam－ ple， $0.01 \mu \mathrm{~F}$ ，＂2nd IF screen－bypass capacitor＂）．Keep a copy of the bill， and the next time the customer comes in，you＇ll quickly be able to see what you＇ve already done to that set．And you＇ll want to know the date of installation for parts that are covered by warranty－ yours or the manufacturer＇s．

And be sure to write clearly！If you can＇t read your own writing， get someone else to do it for you！ That way，if you get a callback on a job，you＇ll have some idea of where to begin troubleshooting．If you can pull the original bill，you＇ll be able to tell just which parts you installed，and，more importantly， which you didn＇t．

That＇s about all for now．I got a card from an old friend，Bill Eslick， 2607 E．12th Street，Wichita，KS 67214．He wants to buy old issues of Radio－Electronics，Radio－Craft， etc．Drop Bill a line if you have any back issues for sale．

R－E

SERVICE OUESTIONS

BLOOMIN＇PROBLEMS

I＇ve got a problem in my own set！ It＇s blooming with visible retrace lines，and the contrast control won＇t darken the screen．The brightness in－ creases until the HV shuts off．I＇ve checked all voltages，and they seem normal．The PC board is so delicate that I don＇t want to do a lot of desol－ dering without a good idea of where to begin．I hope you can help．－R．D． W．，Bergen，NJ．

So do I！I think you＇ll find a leaky transistor somewhere．Check all DC voltages carefully and see if one is a good bit off．If so，that will change the bias on the CRT，and make it draw more current until the set shuts off．Start by measur－ ing the CRT grid and cathode volt－ ages very carefully，and then trace the circuit back until you come to the stage that controls it．There you will find the the trouble．

RED－HOT 6KD6 TUBE

I＇ve got a Philco CT7340AWA．It uses a 6 KD6 horizontal output tube． The problem is that the 6KD6 plate gets red hot and there is no HV．The sound also gets distorted．Any ideas？－M．R．，Flushing，NY．

Several，and all boil down to one thing；you have lost the grid drive on the 6KD6 tube．That drive nor－ mally generates a high negative voltage to bias the tube．If you lose grid drive，the tube will draw a very high current，perhaps as much as $400-500 \mathrm{~mA}$ ．That＇s normal．The fact that the tube will take that much current shows that it is still good，but don＇t allow high current to flow through the tube for too long，or it might be damaged．

Normal bias on the 6KD6 should be at least -60 volts．Check your schematic for the exact value，be－ cause sometimes it＇s even more． You may also want to check the horizontal oscillator．

R－E

THROUGH HOME STUDY

Our New and Highly Effective Advanced－Place－ ment Program for experienced Electronic Tech－ nicians grants credit for previous Schooling and Professional Experience，and can greatly re－ duce the time required to complete Program and reach graduation．No residence schooling re－ quired for qualified Electronic Technicians． Through this Special Program you can pull all of the loose ends of your electronics background together and earn your B．S．E．E．Degree．Up－ grade your status and pay to the Engineering Level．Advance Rapidly！Many finish in 12 months or less．Students and graduates in all 50 States and throughout the World．Established Over 40 Years！Write for free Descriptive Lit－ erature．
COOK＇S INSTITUTE
OF ELECTRONICS ENGINEERING
बr ${ }^{2}$ Biz ㅇI롤 potiox 20245 JACKSON，MISSISSIPPI 39209

CIRCLE 184 ON FREE INFORMATION CARD

MARKET CENTER

FOR SALE

TUBES new, unused. Send self-addressed, stamped envelope for list. FALA ELECTRONICS, Box 1376-2, Milwaukee, WI 53201.

WHOLESALE car-radio computer telephone audio video acessories antenna catalog (718) 897-0509 D\&WR, 68-12 110th St., Flushing, NY 11375.
WORLDS best channel 3 notch filter. $\$ 19.95$. (Dealer inquiries invited). CROSLEY (A), Box 840 , Champlain, NY 12919.
SPECTACULAR strobe light chasers, stroboscopic devices, Helium-Neon Laser components, scientific items, more! Free catalog. ALLEGRO ELECTRONIC SYSTEMS, \#3R Mine Mountain, Cornwall Bridge, CT 06754.
ELECTRONICS. $\$ 1.50$ brings flyer, grab bag. LYNN JOHNSON, 2221 The Alameda \#176, Santa Clara, CA 95050.
CABLE- TV converters and equipment. Plans and parts. Build or buy. Free information. C\&D ELECTRONICS, PO Box 1402, Dept. RE, Hope, AR 71801.

HIGH gain descramblers, CRT automatic dimmer, SCR Tester, plus other unusual electronic devices. Send $\$ 3.00$ for info. RB ELECTRONICS ENGINEERING, PO Box 643, Kalamazoo, MI 49005.
CLONE kits, modems, hard drive kits, disk drives, diskettes and printers, memory, and IC's. Distributor pricing to end users and dealers. For catalog call $1-800-833-2600$. In Ohio call (513) 531-8866. Free shipping.
CATALOG: cable converters, and descramblers, N12 mini-code $\$ 98.00$. SB3 $\$ 99.00$. Special: Combination Jerrold 400 and SB3 $\$ 165$. Pulse descrambler kit (assembles in half hour) $\$ 79.00$, built $\$ 120.00$. Satellite descrambler kit (assembles in one hour) $\$ 120.00$, built $\$ 190.00$. Send $\$ 1.00$. MJ INDUSTRY, Box 531, Bronx, NY 10461.
FIBER optics experimenter's kit: transmitter, receiver, 3 m . lightguide cable, data sheets, application notes. Send \$12.00. MASE, R.D. \#1 Box 1033 , Orwigsburg, PA 17961.
MICROCONTROLLER tell me your application and I'll supply proper input/output electronics. Call or write for details. WERNER SPECIALTY ELECTRONICS, 4388 Crystal Peak Dr., Las Vegas, NV 89115 (702) 644-5938
Z8 based control and acquisition systems. From \$299. H.H.S. MICROCONTROLLERS, 5876 Old State, Edinboro, PA 16412. (814) 734-4338.
USED technical books: Electronics, physics, mechanics, mathematics, $\$.37$ stamp: SOFTWAVE, 1515 Sashabaw, Ortonville, MI 48462.
AUTOMATIC headlamp dimmer for car, truck etc. $\$ 10.00$ for parts list, schematic, full instructions. Add $\$ 3.00$ for photos of completed unit and PCB with parts mounted. Under $\$ 25$ to build. FRANGLO, 8197 Lasombra Way, Sacramento, CA 95823.

RESTRICTED technical information: Electronic surveillance, schematics, locksmithing, covert sciences, hacking, etc. Huge selection. Free brochure. MENTOR-Z, 135-53 No. Blvd., Flushing, NY 11354.

WARNING (cable equip. buyers): Let the Oak's rot! Don't buy used equipment when you can buy new for less. $\mathrm{N}-1200 \$ 75.00$, vari sync add $\$ 10.00$. 10- $\$ 58.00$, case of $20 \$ 48.00$ channel 2 or 3. SB-3000 with auto switch $\$ 75.00$, 10 or more $\$ 65.00$, case of $20 \$ 55.00$. Vari sync plans and parts list $\$ 10.00$. Remotes, converters, video accessories. 90 day guarantee. Free catalog. Call
or write today. MC, Visa, C.O.D. (402) 331-4957. M. D. ELECTRONICS, 5078 So. 108th \#115, Omaha, NE 68137.
CABLE television converter, descrambler, and microwave television antenna equipment accessories video catalog. Free. CABLE DISTRIBUTORS UNLIMITED, 116 Main Road, Washington, AR 71862.
ELECTRONIC projects, components, PCB supplies, test instruments. Oscilloscopes $\$ 219.00$, multimeters $\$ 7.95$, power supplies $\$ 69.95$. Resistors 1 cent. 2 year guarantee. Call or send SASE for free catalog. T.O.R.C.C.C., 1131 Tower, Schaumburg, IL 60195 (312) 490-1374.

Quality Microwave TV Antennas
Multi-Channel 1.9 to 2.7 GHz
40dB Gain True Parabolic 20 Inch Dish Complete System $\$ 99.95$ (plus shipping) Dealerships, Qty. Pricing, Replacement Parts Phillips-Tech Electronics
P.O. Box 8533 • Scottsdale, AZ 85252 (602) 947-7700 [33.00 Credit all phone orders) WARRANTY MasterCard • Visa • COO's

TELEPHONE extension in your car. Morse Code for the untalented. TV descramblers. Legal police radar blocker. Detective electronics. Home video production equipment. 50 page catalog $\$ 3.00$. DBE, POB G, Waikiki, HI 96815.
CB Tune-up manual Volume II. Specific adjustments, modifications for peaking all popular CB's. Covers over 1300 radios. $\$ 19.95$, Visa, MasterCard to: THOMAS PUBLISHING, 127-R Westwood, Paris, IL 61944
CABLE-TV converters and descramblers. Low prices, quality merchandise, we ship C.O.D. Send $\$ 2.00$ for catalog. CABLETRONICS UNLIMITED, PO Box 266, South Weymouth, MA 02190. (617) 843-5195.
SELL blank video cassettes. Super High Grade Olympia VHS T-120. Fully guaranteed. Only $\$ 3.49$ your cost. Add $\$ 5.00$ shipping and handling for any quantity. STRANDBERG. 1001 S . Elm Street, Greensboro, NC 27406. Telephone (919) 274-3775. Check, M.O., VISA or MasterCard account number \& expiration date.

LOTTO Buster. Analyzes all 6 digit lotto games. $\$ 22.50$. IBM and compatibles. LOTTO BUSTER, 912 North Hampton, Bay City, MI 48708.

IS it true...Jeeps for $\$ 44$ through the government? Call for facts! 1-312-742-1142, ext. 4673.

LINEAR parts, tubes, transistors -MRF454 \$16.00, MRF455 \$12.00, MRF477 \$11.00, MRF492 $\$ 18.00$. Catalog. RFPC, Box 700, San Marcos, CA 92069 (619) 744-0728.
TV tunable notch filters, free brochure. D.K. VIDEO, Box 63/6025, Margate, FL 33063. (305) 752-9202.
TEST equipment, reconditioned. For sale. $\$ 1.25$ for catalog. WALTER'S, 2697 Nickel, San Pablo, CA 94806 (415) 724-0587.
LASERS, components and accessories. Free catalog, M.J. NEAL COMPANY, 6672 Mallard Ct., Orient, OH 43146.
FREE AC adapter (limited offer) with Assortment \#103 -Toko coils 144LY-120K, $520 \mathrm{HN}-3000023$, BKAN-K5552AXX(2); PCB transistors 2N3904(2), BFQ85 (Sub); IC's 7812, 74123, MC1330A1P; Diodes 1N914, 1N5231B. Only $\$ 25.00$. Coils (only) $\$ 8.00$ / set. Free Shipping. MCNisa/COD. Toll free 1-800-821-5226 Ext. 426 (orders). JIM RHODES, INC., 1025 Ransome Lane, Kingsport, TN 37660.

TUBES, name brands, new, 80% off list. KIRBY, 298 West Carmel Drive, Carmel, IN 46032.
INDIVIDUAL Photofact-folders \#1 to \#1400. \$3.00 postpaid. LOEB, 414 Chestnut Lane, East Meadow, NY 11554.
WHOLESALE catalog of unusual money making electronic items. Dealers wanted. Rush \$1. CROSLEY (A), Box 840, Champlain, NY 12919.

CB MODIFICATIONS

Increase channels, range, privacy! We specialize in frequency expanders, speech processors, FM converters, PLL \& slider tricks, how-to books, plans, kits. Expert mail-in repairs \& conversions. 16 -page catalog \$2. Our 11th year!
CBC INTERNATIONAL, P.O. BOX 31500RE.
PHOENIX, AZ 85046

POWER supplies, powered/unpowered breadboards digital trainers. Kit or assembled. Lowes prices. High quality. Free catalog. TERA ELECTRONICS, Box 2482-RD, Evergreen, CO 80439 (303) 674-6844

SCIENTIFIC Atlanta non-addressable converters 8500 series (original units), remote control... $\$ 250.00-\$ 275.00$. Tacom and Zenith de scramblers available, guaranteed. N.A.S., (213) 631-3552
CB'ERS Monitor your CB's modulation through headphones, "Audio Trakker"...\$19.95, details $\$ 1.00$. LEK-TRONIX, Box 5261, Long Beach, CA 90805. (213) 631-3552.

TUBES: "oldest," "latest." Parts, components, schematics. SASE for list. STEINMETZ, 7519 Maplewood Ave., R.E., Hammond, IN 46324.
TI-99/4A software/hardware bargains. Hard-to-find items. Huge selection. Fast service. Free catalog, DYNA, Box 690, Hicksville, NY 11801
VIDEO scrambling techniques. The original "secret manual" covers sinewave, gatedpulse, and SSAV systems. 56 pages of solid, useful, legible information. Only $\$ 14.95$. ELEPHANT ELECTRONICS INC., Box 41865-J, Phoenix, AZ 85080. (602) 581-1973.
WIREWRAP labels. Identify IC's, pins. Easier, errorless wrapping. All DIPs 8-40 pins. Inexpensive 363 lables $\$ 6.00$. PAUL'S LABELS, 7320 Embas sy, Miramar, FL 33023.
BUY BONDS

Pacific Cable Company，Inc．
7325½ RESEDA BLVD．，DEPT．R－12 • RESEDA，CA 91335 （818）716－5914 • No Collect Calls •（818）716－5140
IMPORTANT：WHEN CALLING FOR INFORMATION
Please have the make and model \＃of the equipment used in your area．Thank You

BUGGED? Wiretapped? Find out fast. Countermeasures equipment catalog $\$ 1.00$. CAPRI ELECTRONICS, Route 1R, Canon, GA 30520.
\$\$WIN with thoroughbred/harness, Greyhound handicapping software...\$29.95, enhanced... $\$ 49.95$. Professional football handicapping system... $\$ 39.95$. For most computers. Free information. SOFTWARE EXCHANGE, Box 5382RE, W. Bloomfield, MI 48033. (800) 527-9467.
CABLE TV equipment, Scientific Atlanta, Zenith, Jerrold, Oak, send $\$ 2.00$ for catalog. K.D. VIDEO, P.O. Box 29538 Mlps., MN 55429.

TUBES! 59 cents. Year guarantee. Free catalog. Tube tester $\$ 8.95$. CORNELL, 4215 University, San Diego, CA 92105.

SATELLITE TV VIEWERS
 Get the most complete weekly listings. Send $\$ 1$ for sample copy.
 P.O. Box 308E, Fortuna, California 95540 800-358-9997 (U.S.) • 800-556-8787 (Calif.) 707-725-2476 (all others)

BRAND new Oak descramblers, $\$ 35.00$ each; Varisync Oak $\$ 45.00$ each; SB-3 $\$ 89.00$; Tri-mode $\$ 125.00$; Bi-state $\$ 125.00$; call us, we ship UPS COD. PONDEROSA COMPANY, (303) 634-6666.

TV SCR Tester. Hand-held will also test triacs, diodes, transistors, ECG 89 HO transistors in opera tional mode. Defines AKG. Will save time. $\$ 49.95$ Send check or money order. BFE, P.O. Box 3942, Albany, GA 31706-3942.

PRINTED-CIRCUIT BOARDS

PRINTED circuit boards and artwork. Design Cad/ Cam plated through holes. Competitive pricing. Sm Artwork supported. EXPRESS CIRCUITS, 314 Cothren Street, P.O.Box 58, Wilkesboro, NC 28697. (919) 667-2100.

LOW quotes, high quality, quick service. Single, double sided, multilayered boards. Prototypes through production quantities. Design/layout capabilities. Board assembly/turnkey facilities. Call or write for quotes and info--T.O.R.C.C.C., 1131 Tower, Schaumburg, IL 60195, (312) 490-1374.

INVENTORS

INVENTORS! Can you patent and profit from your idea? Call AMERICAN INVENTORS CORPORATION for free information. Over a decade of service. 1 (800) 338-5656. In Massachusetts or Canada call (413) 568-3753.

BUSINESS OPPORTUNITIES

MECHANICALLY inclined individuals desiring ownership of small electronics manufacturing busi-ness-without investment. Write: BUSINESSES 92-R, Brighton 11th, Brooklyn, NY 11235.
YOUR own radio station! AM, FM, TV, Cable. Licensed/unlicensed. BROADCASTING, Box 130 F12, Paradise, CA 95969.
\$10.00-\$360.00 weekly! Become circular mailer. No quotas. Sincerely interested, rush stamped en velope: NATIONAL MAILING, Box 19759-RA12, San Diego, CA 92119.
DEALERS wanted! DMM's, solderless breadboards, soldering tools. Individuals welcome. CENTURY INTERNATIONAL COMPANY, Box 29762 , Dallas, TX 75229

EDUCATION \& INSTRUCTION

COMPUTER repair career training in 5 months by accredited Florida electronics school. Lifetime placement. Financial assistance if qualified. Call SYSTEMS TECHNOLOGY INSTITUTE, (305) 331-2840
LEARN to be a television studio technician! After only 14 months earn your degree and a great career in video. Financial aid and national placement as sistance. Dallas (214) 263-2613 or Long Beach (213) 595-1660. VIDEO TECHNICAL INSTITUTE.

FCC commercial general radiotelephone license correspondence course. 60 individual lessons for $\$ 89.50$. Payment plan. Results guaranteed! Details free. AMERICAN TECHNICAL INSTITUTE, Box 201, Cedar Mountain, NC 28718.
MASTERCARD AND VISA are now accepted for payment of your advertising. Simply complete the form on the first page of the Market Center and we will bill.

THE NEW 65/9028 VT ANSI VIDEO TERMINAL BOARD!
 \star FROM LINGER ENTERPRISES *

A second generation, low cost, high performance, mini sized, single board for making your own RS232 Video Terminal. Use as a computer console or with a MODEM for hook up to any of the telephone-line computer services.
FEATURES:

* Uses the new SMC 9028 Video Controller Chip coupled with a 6502A CPU.
* RS-232 at 16 Baud Rates from 50 to 19,200
\star On board printer port!
$\star 24 \times 80$ format $(50 / 60 \mathrm{~Hz})$.
\star For $15,750 \mathrm{~Hz}$ (Horiz.) monitors.
* 3 Terminal Modes: $\mathrm{H}-19$, ADM3A, and ANSI X 3.64-1979
* Wide and thin-line graphics.
\star White characters on black background or reversed.
* Character Attributes: De-Inten, Inverse or Underline.
\star Low Power: 5VDC @.7A, $\pm 12 \mathrm{VDC}$ @ 20MA.
\star Mini size: 6.5×5 inches.
\star Composite or split video.
* 5 X 8 Dot Matrix characters (U/L case).
* Answer back capability.
* Battery backed up status memory.
* For ASCII parallel keyboard.
(Full Kit)

SOURCE DISKETTE: PC/XT FORMAT 51⁄4 IN. \$15

ADD \$40 FOR A\&T

Digital Research Computers

(OF TEXAS)

$$
\text { P.O. BOX } 381450 \text { • DUNCANVILLE TX } 75138 \text { • (214) 225-2309 }
$$

Call or write for a free catalog on Z-80 or 6809 Single Board Computers, SS-50 Boards, and other S-100 products.

TERMS: Add $\$ 3.00$ postage. We pay balance. Orders under $\$ 15$ add 75 e handling. No C.O.D. We accept Visa and MasterCard. Texas Res. add $5-1 / 8 \%$ Tax. Foreign orders (except Canada) add $20^{\circ}=\mathrm{P} \& \mathrm{H}$. Orders over $\$ 50$ add 85 C for insurance.

CIRCLE 57 ON FREE INFORMATION CARD

WANTED

INVENTORS！AIM wants－ideas，inventions，new products，improvements on existing products．We present ideas to manufacturers．Confidentiality guaranteed．Call toll free 1 （800）225－5800 for infor－ mation kit．
INVENTIONS，ideas，new products wanted！Indus－ try presentation／national exposition．Call free 1 （800） 528－6050．Canada， 1 （800）528－6060．X831．

DO IT YOURSELF TV REPAIR

NEW．．．repair any TV．．．easy．Retired serviceman reveals secrets．Write，RESEARCH，Rt3，Box 601BR，Colville，WA 99114.

SPEAKER \＆ELECTRONICS CATALOG 1001 BARGAINS IN SPEAKERS toll free 1－800－346－2433 for ordering only． 4904 MCGEE STREET KANSAS CITY，MO． 64408

CABLE－TV DESCRAMBLERS

ALL brands available．＂We won＇t be undersold．＂ Dealer inquiries welcome．We ship C．O．D．＇s．For catalog send $\$ 3.00$ to CONSUMER VIDEO CORP．， P．O．Box 913，Clifton Park，NY 12065．（518） 783－5636 M－F 9AM－5PM E．S．T

EPROM PROGRAMMING

HOBBYISTS；Pretested EPROMS sold with your programming installed．Program listing provided． Fast service．Write or call：ROMULUS MICRO－ CONTROL，Box 8669，Rockville，MD 20856．（301） 540－8863．

SPEAKER REPAIR

SPEAKER reconing－radio，hi－fi，musical instru－ ment．All work guaranteed．SSI， 725 Archer Ave．，Ft． Wayne，IN 46808．（219）42－MUSIC

LASERS

HE－NE complete $\$ 129.95$ ，modulated systems available LES ELECTRONICS，PO Box 800276 ， Dallas，TX 75380.

SATELLITE TV

CABLE TV secrets－the outlaw publication the cable companies tried to ban．HBO，Movie Channel， Showtime，descramblers，converters，etc．Sup－ pliers list included \＄8．95．CABLE FACTS，Box 711 － R，Pataskala，OH 43062.
CABLE TV Source Book－a complete listing of suppliers for hard－to－find converters，descramblers， technical information，schematics and much much more．Full refund if not satisfied．Send $\$ 4.95$ to CABLE，Box 12505－R，Columbus，OH 43212
PATENTED optical process satellite sound system． For information send $\$ 3.00$ to：BEDINI ELEC－ TRONICS，PO Box 769，San Fernando，CA 91341.
SATELLITE systems $\$ 349.00$ ，catalog $\$ 2.00$ ．Also： KU band，exports．STARLINK，INC．，2603－16R Ar－ tie，Huntsville，AL 35805.
BUILD your own satellite system and save！Instruc－ tions，schematics，parts！Catalog $\$ 1.00$（refunda－ ble）：XANDI，Box 25647，Dept．21H，Tempe，AZ 85282.

TUNE subcarriers on FM receiver．Including multi－ plex stereo．Plans $\$ 8.65$ ，components $\$ 14.60$ ， board \＄9．50．I．F．IN－NOVATIVE，Box 745，Madras， OR 97741.
59 degree brand name LNA＇s！LNB＇s！Ku－Band LNB＇s！Discount pricing！Send stamped envelope： LNA， 201 E．Southern，Suite 100H，Tempe，AZ 85282.

QUALITY products－low prices－no gimmicks－ send for free brochure and 800 number to S．S．E．， POB 3833，Ocala，FL 32678.
OAK Orion＂turn－on＂modifications：＂Chip－kit＂or ＂remote keypad．＂details $\$ 1.00$ ．NAS－SAT，Box 5261，Long Beach，CA 90805．（213）631－3552．

Pay TV and Satellite Descrambling All New 6ith Ediftion！

Now 100 pages of working schematics and theory for all major cable and satellite sys－ tems，including Orlon，Video Cypher，Fantasy and Extasy．New sections on how illegal de－ scramblers are detected，Scientific Atlanta， Tri－Mode，Pilotless，Pico，Star－Lok IV and B－ Mac bypasses．Latest info on Orlon pirate Mac bypasses．Latest info on Orlon pirate most complete source of descrambling info available $\$ 14.95$ ，MDS handbook $\$ 10$ ．，Satel－ lite systems under $\$ 600.00$ ，$\$ 11.95$ ．New winter product catalog $\$ 2.00$ ．

> Shojiki Electronics Corp., 1327R Niagara St., Niagara Falls, NY 14303. CDD's 716 -284-2163

ATTENTION satellite dealers．See everything with your video cypher 2000E demonstrator on all the transponders（secret modification voids manufac－ turers warranty）．Send $\$ 24.00$ for VC kit．Send $\$ 10.00$ for full set of schematics of the $\mathrm{Ma} /$ com model 2000E receiver．TV SHOP， 127 E．Mission， Fallbrook，CA 92028．（619）723－1302．
DESCRAMBLER unscramble videocipher II satel－ lite TV signals with Decipher－Two（video only）．Sim－ ple low cost circuit using only three timer IC＇s．P．C． ple low cost circuit using only three timer MIC．P．C． board，instructions $\$ 35.00$ ．P．P．VALLEY MICRO－
WAVE ELECTRONICS，Bear River，Nova Scotia， Canada BOS－1BO．（902）467－3577．

PLANS AND KITS

CATALOG：Hobby／broadcasting／1750 meters／Ham／ CB：transmitters，amplifiers，antennas，scramblers， bugging devices，more！PANAXIS，Box 130－F12， Paradise，CA 95969.
CRYSTAL radio sets，plans，parts，kits，catalog \＄1．00．MIDCO， 660 North Dixie Highway，Hol－ lywood，FL 33020.
BUILD this five digit panel meter and square wave generator including an ohms，capacitance and fre－ quency meter．Detailed instructions $\$ 2.50$ ．BAG NALL ELECTRONICS， 179 May，Fairfield，CT 06430.

CABLE TV converters：Jerrold Products in－ clude＂New Jerrold Tri－Mode，＂SB－3， Hamlin，Oak VN－12，M－35－B，Zenith，Mag－ navox，Scientific Atlanta，and more．（Quan－ tity discounts） 60 day warranty．Service converters sold here．For fast service C．O．D．orders accepted．Send SASE（60 cents postage）or call for info（312） 637－4408．Midwest Electronics，Inc．，HIG－ GINS ELECTRONICS，5143－R W．Diversey， Chicago，IL 60039．MC／Visa orders accept－ ed．No Illinois orders accepted．
JERROLD gated pulse theory．Twelve information packed pages covering DI \＆DIC converter opera－ tion．Includes introduction to trimode system．\＄6．95 plus $\$ 1.50$ postage and handling．ELEPHANT ELECTRONICS，INC．，Box 41865－J，Phoenix，AZ 85080．（602）581－1973．

TELEPHONE bug，FM room bug schematics with detailed construction procedures using Radio Shack＇s numbered parts．Both，\＄6．00．Receivers available．SHEFFIELD ELECTRONICS， 7223 Stony Island，Chicago，IL 60649.
STRANGE stuff．Plans，kits，new items．Build satel－ lite dish $\$ 69.00$ ．Descramblers，bugs，adult toys． Informational photo package $\$ 3.00$ refundable．DI－ RIJO CORPORATION，Box 212，Lowell，NC 28098.
DESCRAMBLE the latest video cassette copy pro－ tection scheme．Our simple Line Zapper circuit takes the jitter out of your picture．Complete plans and theory only $\$ 9.95$ plus $\$ 1.50$ postage and han－ dling．ELEPHANT ELECTRONICS，INC．，Box $41865-J$, Phoenix，AZ 85080．（602）581－1973．
HI－FI speaker systems，kits and speaker compo－ nents from the world＇s finest manufacturers．For be－ ginners and audiophiles．Free literature．A\＆S SPEAKERS，Box 7462R，Denver，CO 80207．（303） 399－8609．
VOICE disguisers！Telephone bugs！FM bugs！ Other kits！Catalog \＄1．00（Refundable）：XANDI，Box 25647，Dept．60F，Tempe，AZ 85282.

EXPERIMENT with fiber optics！Send your voice over a beam of light via an optical fiber．Complete kit （\＄39．95）includes microphone，speaker，fiber，PCB＇s and all parts．Easily assembled．Complete plans package only $\$ 5.95$ ．Send to：FIBER SCIENCES， Box 5355，Chatsworth，CA 91313－5355．CA resi－ dents add 6．5\％．
ROBOTICS catalog for hobbyists． 20% off sale． $\$ 2.00$（refundable）．ALPHA ROBOTICS INC．，Box 21091，St．Paul，MN 55121.
SURROUND sound decoder plans．Extracts hidden surround Sound track from any stereo audio－visual source．Effects produced create remarkable spa－ ciousness like being in a theater．SSD features a built－in amplifier，volume and tone controls and line level out．Easy to build．For complete plans send $\$ 8.95$ to SYNECTICS， 524 San Anselmo Avenue， Suite 201，San Anselmo，CA 94960.
JERROLD tri mode add－on circuit．Complete kit includes PC board，parts，schematic and instruc－ tions for interface in SB or DIC type units $\$ 15.00$ ． ARUS ELECTRONICS，PO Box 662，Chappaqua， NY 10514.
BOOMING bass！Incredible hi＇s！Build your own graphic equalizer．Studio quality！Plans $\$ 5.00$ ． BRUCE EDWARDS， 10326 Lawson Rd．，Jackson－ ville，FL 32216.
BRAIN waves control robot inexpensively with com－ puter．System plans $\$ 19.95$ ．ROSE， 990 Seacoast I．B．，CA 92032.
DESIGN your own custom circuits on your Com－ modore $64 / 128$ ．Just enter specifications and the com－ puter does the rest．Send for free information． WEASELGRAPHICS PROGRAM，Dept．RE11． 606 Thomasville，Pocahontas，AR 72455.
KITS！Stereo scratch filter，frequency counter，radar detector and more．Semi－assembled and tested． Write for free literature．SERENA INDUSTRIES， 1180－A Aster Ave．，Sunnyvale，CA 94086.
ZENITH cable anti－flash kits．Dealers only． 100% guaranteed．Works where others fail．UES，Box 1206 Elgin，IL 60121．（312）697－0600．
PROGRAMMABLE chase light circuit．Useful as auto brake light system P．C．B．，plans $\$ 6.50$ PPD． J．G．M．LABS，PO Box 62，Eola，IL 60519.
FREE microprocessing，memory chips，etc．Free electronics magazine subscriptions，free education in computers．For information write MICROSAT CORPORATION， 2401 N．E．Cornell Bldg．， 133 Hill－ sboro，OR 97124.
DESCRAMBLING，new secret manual．Build your own descramblers for cable and subscription TV． Instructions，schematics for SSAVI，gated sync， sinewave． $\mathbf{\$ 8 . 9 5}$ ．Satellite descrambling manual． Thorough explanation of digital audio encoding $\$ 10.95$ ．（HBO，Cinemax，Showtime，etc．）For imme－ diate delivery add $\$ 1.00$ ．CABLETRONICS，Box 30502R，Bethesda，MD 20814.
COMPUTER plans／kits 6802 micro kit $\$ 35.00$ ，Z 80 micro $\$ 40.00$ ，EPROM programmer $\$ 30.00$ ，plans $\$ 5.00$ ．Build it yourself and save！MICRO MOD， 1419W．Colt，Chandler，AZ 85224.
SURVEILLANCE transmitters．Dozen proven sche－ matics，parts lists．\＄10．00．SEAL，PO Box 15253, Plantation，FL 33318.

है＂／n Antvinc DEVG

PLANS－All Parts Available in Stock
－LC5 BURNING CUTTIG CO2 LASER ．$\$ 20.00$ －RUB3 RUBY LASER RAY PISTOL ．．．．．． 20.00 －BTC5 1．5 MILLION VOLT TESLA COIL．． 15.00 －PTG1 PLASMA TORNADO GENERATOR 10.00 －GRA1－GRAVITY GENERATOR 10.00 －MAGNETIC CANNON PROJECTOR ．．．．．． 10.00

KITS－Includes Plans and Parts

－LHC2K SIMULATED RED／GRN／YEL LIGHT LASER
－BTC3K 250,000 VOLT TESLA COIL ．．． 159.50
－10G1K ION RAY GUN 109.50
－PSP3K PHASOR SHOCK WAVE PISTOL 49.50
－STG1K－STUN／PARALYZING GUN ．．．．． 39.50
－INFIK INFINITY TRANSMITTER．
－MFT1K 2－3 MILE RANGE FM VOICE XMTR PC BOARD 49.50

ASSEMBLED AND TESTED PRODUCTS

－LGU30 RED 1MW PORTABLE HENE LASER
－TCL30 SOLID STATE TESLA COIL 35 KV 84.50 －IPG50 POCKET PAIN FIELD GENERATOR 64.50 －BLS10 BLASTER DEFENSE WEAPON ．．． 89.50 －ITM10－100KV SHOCK AND STUN GUN 99.50 －PPF10 PHASOR PAIN FIELD PORTABLE 249.50 －SNP20 SECURITY PHONE LISTENER ．． 99.50
－CATALOG CONTAINING DESCRIPTIONS OF ABOVE PLUS HUNDREDS MORE AVAILABLE FOR $\$ 1.00$ OR INCLUDED FREE WITH ALL ABOVE OR－ DERS
PLEASE INCLUDE $\$ 3.00$ PH ON ALL KITS AND PRODUCTS．PLANS ARE POSTAGE PAID．SEND CHECK．MO，VISA，MC TO：

INFORMATION UNLIMITED

P．0．BOX 716，DEPT．N1 AMHERST，NH 03031

THIS I．B．M．${ }^{\oplus}$ PC．CLONE IS FOR HARDWARE HACKERS ONLY	
640 BY 420 LCD MONITOR SOCKETS FOR 640 K RAM COLOR GRAPHICS CARD 63 KEY KEYBOARD HAYES MODEM SOFTWARE DESK TOP SOFTWARE 12VDC／115VAC OPERATION FLOPPY DISK CONTROLLER SCHEMATICS TECH MANUAL CASE NOT AVAILABLE HE ZENITH ${ }^{\circ}$ ZX $171 \odot$ CALL FOR DETAILS	
SMART STEPPER SYSTEM － 8085 CPU BOARD RS232 INTERFACE 50－19．2K BAUD 36 INSTRUCTIONS IN ROM 2 STEPPER MOTORS 8 DEG＠ 9 OZIN DRIVER BOARD JOYSTICK CONTROL SOLINOID DRIVER POWER SUPPLY TRANSFORMER REQUIRED － 74 PAGE MANUAL SCHEMATICS USE IT FOR A PLOTTER OR ROBOT	
APPLE SERIAL CARD HARD WARE HANDSHAKING WORKS WITH TOCEMS ARE SUPPORTED ON CARD NO HARDWARE DEPENDENT CODE IS NEEDED ElS Advanced Logic Systems only 29^{00}	
CA．ADD 6.5% TAX．PREPAID OR CO．D ONLY．OFFER GOOD WHILE SUPPLIES LAST， 15 DAY TRIAL PERIOD ON MOST ITEMS．PRICES SUBJECT TO CHANGE SUBJECI5 DAY SALES AGGREMENT CALL FOR A COPY	
IOAM－6PM CLOSED SUN．MON	4401 OAKPORT OAKLAND CA． 94601 HIGH \＆ 880

R－E ROBOT

continued from page 56
need is a way to transport our commands from the control terminal to the robot． That is done using an RF link．The link interfaces to the terminal via the termi－

FIG．2－MOST OF THE BASIC CONTROL CIRCUITS are located on a single custom board，designated Board 1．That board is shown here in block－diagram form．
of FORTH is written in FORTH，the inter－ nal routines are available to the program－ mer，and we can use parts of the FORTH interpreter in the RCL interpreter．The end result is an interactive RCL that can be modified by the user，and that can be used without a disk drive．We will be looking at RCL in depth in a future installment．

Operator interface

Most applications of robots are limited not by the ability of the hardware to per－ form a given task，but by the amount of time it takes to＂teach＂the robot．RCL significantly improves programming pro－ ductivity．

Several methods of operator interface were considered．One was the＂teach pen－ dant＂approach wherein motion se－ quences are learned and stored for recall and execution at a later time．However， after both utility and expense were consid－ ered，all other methods of interface were abandoned in favor of using a serial termi－ nal．The reason is that almost everyone who considers building a robot has a ter－ minal or a personal computer that can emulate a terminal．And if a more sophis－ ticated method of control is desired，the required modifications are easy to per－ form．However，modifications of that sort are left to the ingenuity of the reader．

It is important to be able to operate the robot from a remote location．What we
nal＇s serial port．
Table 1 shows how our robot stacks up against several of the leaders in the per－ sonal－robot market：the $R B-5 X$ from RB Robots（14618 W．Sixth St．，Golden，CO 80401）and the Heath（Benton Harbor，MI 49022）HERO 2000．When you compare the capabilities of those robots to ours，we think you＇li find that our inexpensive， build－it－yourself robot more than holds its own against the competition．

That concludes our overview of the R－E robot．In the coming months we will ana－ lyze each of the robot＇s subsystems in detail and show you how you can adapt our design to your applications．

As part of the design process，a special section of RE－BBS，Radio－Electronics＇ new computer bulletin－board service，will be dedicated for use by robot builders．We invite readers who devise interesting ap－ plications，programs，and experiments，or who discover sources of parts，or who have questions，answers，or any other in－ formation of general interest to share that information with others by posting it on the bulletin board．In addition，the author and the editors will be posting circuit modifications，design updates，and sup－ plier information there for your con－ venience．By sharing information in that way，we hope to develop the kind of per－ sonal robot that has long been promised but never produced．

R－E

Sound－Generator IC

9^{95}
 3 Independent

Analog Outputs
Adds Sound Effects to Your Computer This chip is a great way to＂dress－up＂your pro－ grams！Only your imagination will limit the type of sound effects and music you can produce！The three analog audio outputs are independently pro－ grammable．Two general－purpose 8 －bit I／O ports and single 5 VDC supply operation make it easy to interface with most microprocessors． 40 －pin DIP． With interfacing and programming data． \＃276－1787
9.95

DC Fan and Trans

（3）

（4）

（3） $3^{\prime \prime}$ Brushless DC Fan．Low－noise．No hum or AC field problems．\＃273－243 14.95 （4）UL－Recognized Heavy－Duty Transformers．

Volts	Amps	Cat．No．	Each
12.6 CT	3.0	$273-1511$	6.99
25.2 CT	2.0	$273-1512$	7.49
18.0 CT	2.0	$273-1515$	6.99

＂Pro－Look＂Finishing Touches

（13）（14） $11 / 16^{\prime \prime}$ Dia．Knobs For $1 / 4^{\prime \prime}$ shafts \＃274－432

Pkg．of $2 / 1.49$
$1^{\prime \prime}$ Dia．Knobs．\＃274－433
（15）Our Finest Two－Tone Enclosures．
Small． $115 / 16 \times 8^{1 / 4} \times 6^{1 / 8}$ ．\＃270－272
5.99 Large． $3^{1 / 16 \times 81 / 4 \times 6^{1 / 8} \text { ．\＃270－274 }7 .9 .99}$

Touch－Tone Decoder IC

DTMF Receiver In A Single IC
12^{95}
For Many Remote Control Applications High performance，easy to use！Features single analog input and 8 built－in switched－capacitor filters．Selectable hexadecimal or binary coded 2 of 8 output．Clocked by low－cost 3.58 MHz crystal （see below）． 18 －pin， 5 VDC，single supply．With detailed data and circuitry examples．\＃276－1303 $3.58-\mathrm{MHz}$ Crystal．\＃272－1310
1.69

IC Chime，Siren and Buzzer
（5）
（6）

（7）

For Alerters，Alarms，Timers and Fun！ （5）Electronic Chime．Delivers 80 dB ＂ding－ dong＂at 12 VDC．\＃273－071 ．．．．．．．．．． 6.95 （6）Tri－Sound Siren． 3 distinctive sounds．Deliv－ ers 80 dB at 3 VDC．\＃273－072 ．．．．．．．． 5.95 （7）Two－Tone Piezo Buzzer． 100 dB minimum． 8 to 16 VDC．\＃273－070
8.95

Mini Relays and Switches

（18）
（16）Micro－Mini SPDT．Rated 1 amp at 125 VAC． 5 VDC， $90 \mathrm{~mA}, 550$－ohm coil．\＃275－240 ．． 1.69 With 12 VDC Coil．\＃275－241 ．．．．．．．．．．．．1． 1.69 （17）Submini SPST PC－Mount Toggle．Rated 0.3 amp at 125 VAC．\＃275－645 ．．．．．．．．．． 1.59 （18）DPDT Knife Switch．Rated 0.5 amp at 250 VAC．\＃275－1537

996

Voice Synthesizer Team

 Adds Voice Function to Your Computer （1）Text－to－Speech IC．Translates ASCII data to direct Synthesizer．\＃276－1786 ．．．．．． 16.95 （2）Speech Synthesizer．MOS／LSI．Easy in－ terfacing with most computers． \＃276－1784
12.95

8－Bit A／D Converter IC Complete Data Acquisition

System in One IC

High－speed data transfer with minimum support compo－ nents．Features single 5 VDC supply operation，internal sys－ tem clock，single analog input and an on－chip sample－and－ hold circuit．8－pin DIP with data．\＃276－1796 ．．．．．．．．6．95

LEDs Light Up the Season！

（8）Super－Bright Red LED．\＃276－066
99
（9）Blinking Red LED LED 1276
1.19
（10）Blinking Green LED．\＃276－030
（10）Blinking Green LED，\＃276－030 ．．．．．．． 1.19
（11）Flashing Lamps．Yellow，red，green．Ideal for model trains．\＃272－1097

Pkg．of 3／99¢
$145 \ldots . .2 .99$
（12）Xenon Strobe Tube．\＃272－1145

Insulated－Clip Jumpers

 Secure Connections for Easy Testing

 （19）Set of 10 Test Cables． $14^{\prime \prime}$ long． \＃278－0013.49
（20） $20^{\prime \prime}$ Mini－Clip Leads．
\＃278－016
Pair／2．99
（21） 6 －ft．Coiled Leads．Probes at one end，ba nana plugs at other．\＃278－750 ．．．．．．．Pair／3．89

10－Piece Electronic Tool Kit

Includes 30 －watt UL listed soldering iron and stand， solder，solder aid，needle－nose pliers，diagonal cutter， three screwdrivers and heat sink．\＃64－2801

Scientific Calculator

 Never Needs Batteries！

EC－4018．Solar－powered folding－style．Extra－large keys and LCD display． 76 useful functions． 10 －digit mantissa，2－digit exponent．\＃65－982

Solar Energy Project Set

Big $21 / 4 \times 61 / 2^{\prime \prime}$ size，mounted on a $7 \times 4^{\text {＂}}$＂stay－put＂ steel base with rubber feet．Provides a total of 640 plug－in tie points．Includes three binding posts for ex－ plug－in cenections．\＃276－169
ternal connection

Solderless Breadboard

Over 1000 items in stock：Binding posts，Books，Breadboards，Buzzers，Capacitors，Chokes，Clips， Connectors，Fuses，Hardware，ICs，Jacks，Knobs，Lamps，Multitesters，PC Boards，Plugs，Rect fiers，Relays，Resistors，Switches，Tools，Transformers，Transistors，Wire，Zeners and more！

You get durability and famous Micronta ${ }^{\text {® }}$ quality and save $\$ 8.07$ ．Features 25 switch－selected ranges．Meter movement is shunted when closed．Fuse and surge absorber protected．Four detented hinge positions for easy－view position－ ing．Measures AC／DC voltage，DC current and resistance． $71 / 4 \times 45 / 16 \times 11 / 4^{\prime \prime}$ when open．With probes，manual．Batteries extra．\＃22－211

Prices apply at participating Radio Shack stores and dealers

PLAYMASTER

 200W Mosfot Steree Amp Kit GALOAT SO COIKS516
Enjoy your Home Electronics in Total Comfort

Build this matchbox-sized IR transmitter and its matching receier(capable of switching a 10 amp load) and you can control lights \& appliances (even some up to 40°. Line-ot-sight is required and electrical noise, strong light or RF signals may affect the sensitive high gain frontend of the reciever, but even under adverse conditions, the system will operate in an average size room.

Receiver Kit Cat K-3428 $\$ 32.00$ $\begin{array}{ll}\text { Transmitter Kit Cat K-3429 } & \$ 7.95\end{array}$

Get the Audio Quality You Deserve!

Feature for feature, dollar for doilar, this kit out performs the big name competifion Electronic input circuity handl-s moving magnet, moving
coil, CD, hi-fi, NCR, cassette, tuner, \& more, Solt coil, CD, hi-fi, NCR, cassette, tunet, \& more, Soft touch controls de-thump, toroidal transtormers easy to build (but it, after examination, you decide it's beyond your abilities, just return the kit intact for a full refund.

- 100W RMS/channel into 8 ohms 0 Hum. 100 dB below full output © Freq. response: 8 Hz
$20 \mathrm{KHz}(-3 \mathrm{~dB}) ; 2.8 \mathrm{~Hz} .65 \mathrm{KHz}(-1 \mathrm{~dB})$ Uncon $20 \mathrm{KHz}(-3 \mathrm{~dB}) ; 2.8 \mathrm{~Hz} .65 \mathrm{KHz}(-1 \mathrm{~dB})$ O Uncon ditional stability into any load © Distortion 0.01% (typ) $0.003 \% 20 \mathrm{~Hz}-20 \mathrm{KHz}$ © Sensitivity $\mathrm{MM} 2 \mathrm{mV}(80 \mathrm{~dB} \mathrm{~s} / \mathrm{n}) \mathrm{MC} 200 \mathrm{uV}(75 \mathrm{~dB})$ Line
$300 \mathrm{mV}(90 \mathrm{~dB}) \mathrm{CD} 2 \mathrm{~V}(94 \mathrm{~dB})$

Return with us now
to those thrilling days of yesteryear DSE has an exclusive selection of genuit
antique radio kits for builders a collecto antique radio kits for builders \& collecto Assmebled by David Whitby, Australic leading vintage radio enthusiast, the kits leature authentic antuque componer
and oriairal circuitry. Tuning coils arel hand-wound \& the attention to detail impressive. Due to the restricted supply genuine components, productirn of the kits is limited, so don't delav- order no Unidyne 1 Tube Cat K-9001 s99:
Spiderweb coil variometer tuning Reinartz Alt-Band Cat K-9000 4 coils from 560 kHz to 19 MHz \$991 Varometer Super Crystal

Coik. 9002 s ${ }^{\text {5 }} 79$

DSE's RDF rates outstanding technical reviews!

After spending considerable time playing with the RDF, I have a lot of confidence in it.... . If you are considering an FM DF'ing application, the Dick Smith
RDF is certainly worth looking at. When you consider that similar commercial items may cost as much as $\$ 500-600$, it seems to be good value at $\$ 100$

Bruce Williams WA6IVC, OST Aug ' 86

- 12 V Operation e $50-500 \mathrm{MHz}$ range. - Internal alignment reference e 17 calibration e stable digital circuiry Selt-aligning commutating filters

Radio
Direction Finder Kit

Sce 73 for Radlo Amafeurs, July

RDF at a Base Station? Use 12V@1.2A power supply (M-95: \$13.95 each).

\star QUALITY PARTS + DISCOUNT PRIGES －nlecerno

EDGE CONNECTORS
ALL ARE 1.56° SPACING．
 22 EDGE CONNECTOR $\$ 1.25$ ea solder lug style 10 for $\$ 11.00$ 22／44 EDGE CONNECTOR $\$ 2.00$ ea P．C．style 10 for $\$ 18.00$ 22／44 EDGE CONNECTOR solder lug style $\$ 2.50$ each 28／56 EDGE CONNECTOR $\$ 2.50$ ea P．C．style 36／72 EDGE CONNECTOR PC．style $\$ 3.00$ each
$43 / 86$ EDGE CONNECTOR 43／86 EDGE CONNECTOR

$$
\begin{aligned}
& \text { 2N706 } \\
& 2 N 7200
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2N2222AA } \\
& \text { PN2222A } \\
& \text { 2N2904 }
\end{aligned}
$$

4 for $\$ 1.00$
3 for $\$ 1.00$
4 for $\$ 1.00$ 4 for $\$ 1.00$
3 for $\$ 1.00$

2N2904 2N2905

2N2905
M 2955
2N3055
${ }^{2 N} 3055$
PMD 121
TIP 125

transformers

等

$4 \mathrm{VDC} Q 70 \mathrm{ma}$. 6 VAC 9500 ma. $6 \mathrm{VDC} Q 750 \mathrm{ma}$.
 $9 \mathrm{VDC} Q 500 \mathrm{ma}$ ．
 12.5 VAC Q 265 ma is VAC ${ }^{2} 18 \mathrm{VA}$ and
 8.5 VAC 24 VA 1.28 VA
 $24 \mathrm{VAC} Q 250 \mathrm{ma}$ ．

 24 VAC Q 250 mMULTI－VOLTAGE
$3,41 / 2,6,7 / 2,9$ or

Heavy－duty black
phenolic project box with cover and
screws 2 ． ws． $226^{\circ} \times 11^{\circ} \times 11^{\circ}$ cover and

FUSES
 3AG（AGC）SIZE
 GMA SIZE
 $1,2,3,4,5$ AMP 5 of any ONE amperage 75

PLLELETROICSCORP
LOS ANGELES，CA STORE
905 S．Vermont Ave．
213 380－8000
VAN NUYS，CA STORE
6228 Sepulveda Blvd．
818 997－1806

SPECIALS

 1 AMP 50 VOLT DIODES 100 for 54.50
1000 for $\$ 30.00$

$$
\begin{gathered}
\text { SOLDER TAIL I.C. } \\
\text { SOCKETS } \\
\text { 24 PIN } 100 \text { tor } \$ 22.00 \text { t } 52.50 \\
1000 \text { tor } \$ 200.00
\end{gathered}
$$

MICRO－CASSETTE MECHANISM

 SOLID STATE B BUZZER
 6 vdc TTL compatible \＄1．00 each
10 for $\$ 9.00$
2K 10 TURN
\qquad

\＄1．75 each
4inar
所＊¢ 可
10 for \＄15．00

PHOTO－FLASH CAPACITORS $170 \mathrm{mt} \mathrm{330v}$ 75° ea． CAT\＃PPC－170 400 mf 330v CAT＂PPC－400 1.00 ea． $800 \mathrm{mf} \mathrm{330v}$ CAT／PPC－800 1.35 ea．	WALL TRANSFORMER 11.5 Vdc 1.95 Amp． INPUT： 120 Vace SIZE： 3 3／4＂X $2718^{\prime \prime} \times 25 / 8^{\prime \prime}$ CAT \＃DCTX－11519
31／2＂SPEAKER SPRING LEVER	TELEPHONE COUPLING TRANSFORMER Stancor 8 TTPC－8 or Triad \＆TY－304 P 600 ohms c．t． P．C．board mount $3 / 4^{\prime \prime} \times 5 / 8^{\prime \prime} \times 3 / 4^{\prime \prime}$ CAT－TCTX $\$ 1.25$
	XENON FLASH TUBE 3／4＂long X $1 / 8^{\text {e }}$ dia．Flash tube designed for use in compact camera flash units． Ideal for experimentors． CAT\＃FLT－1 2 for $\$ 1.00$

POLARITY SWITCH

Designed to control an CAT \＃RDPS external coaxial relay on
 E EXPERIMENTOR AS PARTS．Heavy chassis box containing a 5 Vdc relay．
cexperimintion AS PARTS．Heav CA 358 op amp and other parts．

I

MINIATURE TOGGLE SWITCHES

RELAYS COMPUTER GRADE 10 AMP SOLID STATE CAPACITORS

 31,000 mot． 15 voc
1344×4 hioh \quad Fultsu 5 VDC RELAY
 $\begin{array}{lll}3 \times 53 / 4^{\text {h }} \text { high } & \$ 4.50 & \begin{array}{l}\text { High sensitvity } \\ \text { COIL．} 120 \text { ohms }\end{array} \\ 60,000 \mathrm{mfd} . ~ & 40 \mathrm{Vdc} & \text { CONTACTS } 1 \text { amp }\end{array}$ Mounts in 14 pin Dip socket

$\$ 1.25$ | 66,000 | mid .15 Vdc | | |
| :--- | :--- | :--- | :--- |
| 3 | 15×3 | high | $\$ 3.00$ | 6 VDC RELAY $86,000 \mathrm{mld} .30 \mathrm{Vdc}$

$3^{-} \times 51 / 4^{*}$ high $\$ 3.50$太1．00 SPECIALS

 1 amp＠ 30 vdc．Highly sensitive，TTL direct drive possible． 120 ohm coil． COIL－ 120 m 4．-6 vdc ． $\begin{array}{lr}11 / 15 \times 13 / 32 \times 1 / 16 & \begin{array}{ll}\$ 1.50 \text { each } \\ 10 & \text { for } \$ 13.50\end{array}\end{array}$
$5,500 \mathrm{mtd} .30 \mathrm{Vdc}$ $13 / 8^{-} \times 31 / 2^{*}$ high $\$ 1.00$
$5,900 \mathrm{mfd} .30 \mathrm{Vdc}$ $13 / 8^{-} \times 21 / 4^{*}$
$9,300 \mathrm{mfh}$
9,50 $\$ 1.00$ $\begin{array}{ll}2 \\ 2\end{array} \times 41 / 2^{\prime \prime}$ high $\$ 1.00$ $18,000 \mathrm{mfd} .10 \mathrm{Vdc}$ $13 / 8^{\circ} \times 25 / 8^{7}$ high $\$ 1,00$ $21 / 2^{-} \times 31 / 4^{-}$high $\$ 100$ $100,000 \mathrm{mid} .10 \mathrm{Vdc}$ $21 / 2^{\prime \prime} \times 6^{-}$high Vdc
V c
$\$ 1.00$
dc
$\$ 1.00$ 13 VDC RELA
CONTACTS：S．PN
10 amp ＠ 120 v $10 \mathrm{amp} @ 120 \mathrm{v}$
Energize coil to open contact．
COIL： 13 vdc 650 ohms
SPECIAL PRICE $\$ 1.00$ each
4PDT RELAY
14 pin KH style．．．
3 amp contacts．
USED but fully
tested $\$ 1.70$ each
Specity ooilvoltage desired
Either 24 vdc or 120 vac
LARGE QUANTITIES AVAILABLE
SOCKETS FOR KH RELAY
75e each

13．8 VDC REGULATED POWER SUPPLY

RECHARGEABLE

\section*{| ST |
| :--- |
| DI |}

STANDARD JUMBO
DIFFUSED T $1-3 / 4$
D．PS．T．LIGHTED ROCKER SWITCH

$\overbrace{1}^{2}$

FLASHER LED 5 volt operation red jumbo T124 size
 $$
\text { size } \$ 1.00 \text { each }
$$

NEW GREEN FLASHER CAT $\# \angle E D-4 G \quad \$ 1.00$ BI－POLAR $\begin{gathered}\text { jumbot } 12 \text { s size } \\ 2 \text { for } \$ 1.70\end{gathered}$ LED HOLDERS wo piece holder
tor jumbol LED
10 for 65 e
100 for $\$ 5.00$ CLEAR CLIPLITE LED HOLDER
Make LED a fancy
indicator Clear
4 for $\$ 1.00$
MAIL ORDERS TO：
P．O．BOX 20406
Los Angeles，CA 90006
TWX－ 5101010163 ALL ELECTRONIC EASYLINK MBX－ 62887748

8 OHMS 15 W

TOLL FREE ORDERS ONLY $1-800-826.5432$

（ORDER ONLY）

QUANTITIES LIMITED
MINIMUM ORDER $\$ 10.00$
USA：\＄3．00 SHIPPING
（IN CALIFORNIA：1－800－258－6666）FOREIGN ORDERS：

MINI－PUSH BUTTON S．PS．T momentary
normally open
4 bushing $\begin{array}{ll}35 \mathrm{e} \mathrm{each} \\ \text { Red button } & 10 \text { for } \$ 3.00\end{array}$ 53 SNAP ACTION Cherry elect．\＃E－21．N．O or N．C． 0．1A contacts．Suitable for alar
and other low energy circuts and other low energy circuits．
$1 h^{*}$ lever

$$
16{ }_{45 \mathrm{c} .}
$$

45EEACH 10FOR $\$ 4$.
220 Vac
COOLING FAN ROTRON \＃
M $\times 777 \mathrm{AB}$ Mutfin XL 220 Vac
$41^{\prime} 8^{\prime} \mathrm{squ}$ $41 / 8^{\prime}$ square
metal frame lan metal frame lan．
CATE $C F-220$ CAT\＃CF－220 $\$ 6.50$ ea 10 for $\$ 60.00 / 100$ for $\$ 500.00$
QUANTITIES AVAILABLE

CALL OR WRITE FOR A FREE CATALOG - OVER 60 HOT \& WELL-QUALIFIED ITEMS FOR YOUR SELECTION!
 GENERATOR
SPECIFICATIONS: Output Power: 500 mw
Output Impedance: 48 O
Power Supply: DC 1.5 .5 V Power Supply: DC $1.5-5 \mathrm{~V} \quad 100 \mathrm{~mA}$ TA. $50 \mathrm{~A} / \mathrm{B}$ It can also be used as a doorbell,
musical box and electronic alarm.

TA.50A CIC-481E

- Jingle Bell
- Silent night
- Rudolph, the red-nosed
- Rudolph, the red-nosed
reindeer
- O come, All ye faithful

TA-50B CIC-482E

- London Bridge is falling - Down - Toy Sympho

Santa
town
doy coming to

- Joy to the world
- I wish you a merry X'mas Hark, the herald Angels
- Row your Boat
- Happy Birthday
- Home sweet home

Melody on purple
bamboo

60W VERSATILE STEREO

80W + 80W DC LOW TIM PRE-MAIN AMPLIFIER

 TA 800
150MC Universal Digital
Frequency Counter sM-100

Frequency Range: $10 \mathrm{~Hz}-150 \mathrm{MHz}$
Event Counter 0 to 99999999 counts. 18 Digit) Input sensitivity: KHz range $10 \mathrm{~Hz}-10 \mathrm{Mhz} 50 \mathrm{mV}$ rms.
Response time : 0.2 second
Hold Function- Hold the last input signal
Hold Function: Hold the last input signal.
Power Supply: DC6V Battery or DC9V 250 MA Adaptor
Dimension $9^{7 / 8^{-}} \times 6^{111} 16^{-} \times 2^{3 / 4^{4}}$
Assembled with tested
$\$ 99.00$
NF-CR BI-FET IC PRE-AMPLIFIER
WITH 3 WAY
TONE TA-2800
CONTROL!

STEREO SIMULATOR

special design of using the most advanceable monoploised L.S.I. It produced a superior analog stereo effect since the LS.I. is equalled 60 pcs of LOW NOISE FET \& TRANSISTOR. The simulator can even held you to promote your television
from a normal one to a special one with a Hi-Fi STEREO func. from a normal one to a special one with a HifiS TEREO funcsources' in covering it to ANALOG STEREO Undother mono the most advanced equipment for every family white is should contribute to your listening pleasure.

As a result of the advanced technology, this unit can contro various colorful light bulbs, the visual effect of which is most suitable in places like party, disco, electronic game centre and 3000 W ($1000 \mathrm{~W} / \mathrm{Ch}$.) which means that it can control 30 pieces of 100 W or 600 pieces of 5 W color light which is enough most usages Kit. $\$ 65.00$
$\$ 75.00$ Ass. with tested $\$ 75.00$ TA-2400A ELECTRONIC ECHO AND REVERBERATION AMPLIFIER

This unit combines the most advanced B.B.D. technique with high quality Japan made components. It has the ollowing FEATURES
it can generate various reflection and reverberation effects it has 3 special effect controls which include reverberation control, delay control and depth control. Special effect kinds of infield sound effect can be obtained by skilful use of this control. It has LED display to show reflection and reverberation.

HIGH QUALITY

MULTIPURPOSE PRE-AMPLIFIER TA-2500
SGREAT
SUN

GGREAT

This specially designed pre-amplifier includes a professional
GRAPHIC EQUALIZER TONE control system and has a gain of $\pm 12 \mathrm{~dB}$. Frequency response extends from 5 Hz to 20 KHz , so as to ensure best performance in whatever adverse condition. It can accept input from various magnetic cartridge, record deck, $C D$ player and tuner; its output can be con-
nected to all kinds of power amplifier!
Assembled with tested 582.00

120W MOSFET POWER AMPLIFIER

 TA-477

This amplifier consists of three super low TIM differential stages, and Hitachi 2SJ49/2SK 134 match pair "MOSFET" as output component whose frequency response and transien response is superior to the other power transistor. Therefore this amplifier has high-fidelity and superior analytic power over the entire Audio Spectrum. It is suitable for reproducing classic and modern music. Heavy Duty Heat Sink with 28 radial fins is included!
Kit $\$ 255.00$
Metal Cabinet/X'Former (Optional) $\$ 23.90 / 819.88$ Kit
$\$ 45.50$

DYNAMIC RAMS

4116-250	16384×1	(250ns)	49
4116-200	16384x1	(200ns)	89
4116-150	16384x1	(150ns)	99
4116-120	16384x1	(120ns)	1.49
мK4332	32768×1	(200ns)	6.95
4164-200	65536×1	(200ns)(5v)	1.19
4164-150	65536×1	(150ns) (5v)	1.29
${ }^{4164-120}$	65536x1	(120ns)(5v)	1.95
MCM6665	65536×1	(200ns)(5v)	1.95
TMS4164	65536×1	(150ns) (5v)	1.95
4164-REFRESH	65536x1	(150ns) (5V)((REFRESH)
TMS4416	16384×4	(150ns)(5v)	4.95
41128-150	131072×1	(150ns) 5 sv)	5.95
TMS4464-15	65536×4	(150ns) (5v)	6.95
41256-200	262144×1	(200ns) (5v)	2.95
41256-150	262144×1	(150ns)(5v)	2.95
$5 \mathrm{v}=$ Single 5 V	olt Supply	REFRESH=Pin 1 Refrosh	

VISIT OUR RETAIL STORE LOCATED AT 1256 SOUTH BASCOM AVENUE IN SAN JOSE
———P HOURS:M-W-F, 9-6 TU-TH, 9-9 SAT, 9-5
1224 S. Bascom Avenue, San Jose, CA 95128
Toll Free 800-538-5000 • (408) 995-5430
FAX (408) 275-8415 • Telex 171-110

DIP CONMECTORS

description	ORDER BY	8	14	16	18	20	22	24	28	40		
HIGH RELABBILITY TOOLED ST IC SOCKETS	AUGATxxSt	． 62	． 79	89	1.09	1.29	1.39	1.49	1.69	2.49		
HIGH RELIABILITY TOOLED WW IC SOCKETS	AUGATxxWw	1.30	1.80	2.10	2.40	2.50	2.90	3.15	3.70	5.40		
COMPONENT CARRIES （DIP HEADERS）	ICCxx	49	59	． 69	． 99	99	． 99	． 99	1.09	1.49		
RIBBON CABLE DIP PLUGS（IDC）	IDP ${ }_{\text {xx }}$	．－．	． 95	． 95	．－－	．－．	．．．	1.75	－－	2.95		

MOUNTING HARDWARE \＄1．00
IDC CONNECTORS

description	ORDER BY	CONTACTS						，
		10	20	26	34	40	50	d
SOLDER HEADER	IDHxxS	． 82	1.29	1.68	2.20	2.58	3.24	
RIGHT ANGLE SOLDER HEADER	IDHxxSR	． 85	1.35	1.76	2.31	2.72	3.39	
WW HEADER	IDH．xW	1.86	2.98	3.84	4.50	5.28	6.63	IDS34
RIGHT ANGLE WW HEADER	IDHxxWR	2.05	3.28	4.22	4.45	4.80	7.30	
RIBBON HEADER SOCKET	IDS $\times x$	． 79	． 99	1.39	1.59	1.99	2.25	
RIBBON HEADER	IDMxx	－－	5.50	6.25	7.00	7.50	8.50	
RIBBON EDGE CARD	IDExx	1.75	2.25	2.65	2.75	3.80	3.95	

DIODES／OPTO／TRANSISTORS			
1 N 751	25	4 N 26	69
1 N759	25	4 N 27	69
$1{ }^{\text {N } 4148}$	25／1．00	4 N 28	69
1 N4004	10／1．00	4 N 33	89
1N5402	． 25	4 N 37	1.19
KBPO4	55	MCT－2	． 59
kbusa	95	MCT－6	1.29
MDA990－2	35	TIL－111	． 99
N2222	25	2N3906	10
PN2222	10	2 N 4401	25
2N2905	50	2 N 4402	25
2 N 2907	25	2 N 4403	25
2N3055	79	2N6045	1.75
2N3904	10	TIP31	49

D－SUBMINIATURE									
description		ORDER BY	CONTACTS						
		9	15	19	25	37	50		
SOLDER CUP	MALE		DBxxP	82	90	1.25	1.25	1.80	3.48
	FEMALE	DBxxS	95	1.15	1.50	1.50	2.35	4.32	
RIGHT ANGLE PC SOLDER	MALE	DBxxPR	1.20	1.49	－．	1.95	2.65	\cdots	
	FEMALE	DBxxSR	1.25	1.55	．．．	2.00	2.79	－	
WIRE WRAP	MALE	DBxxPWW	1.69	2.56	．．．	3.89	5.60	－－	
	FEMALE	DBxxSWW	2.76	4.27	．．．	6.84	9.95	－	
$\begin{aligned} & \text { IDC } \\ & \text { RIBBON CABLE } \end{aligned}$	MALE	10BxxP	2.70	2.95	－－	3.98	5.70	－	
	FEMALE	108xxS	2.92	3.20	．．	4.33	6.76	\cdots	
Hoods	METAL	MHOOD×x	1.25	1.25	1.30	1.30	－	－	
	GREY	HOODxx	65	65	－．．	． 65	75	95	
RDERING INSTRUC ARKED＇$x \times$＇OF TH XAMPLE：A 15 PIN	ONS：INSE HT ANGL	THE NUMBE ART NUMBE ALE PC SOLD	A WO	ULAC	TS IN				

HARD TO FIND ＂SNAPABLE＂HEADERS			SHORTING BLOCKS	Dear Mr．Rose ： I feel compelled to commend you and your people	
			for the pleasant，polite，willingness to help and		
CAN BE SNAPPED APART TO MAKE ANY SIZE HEADER， ALL WITH ．${ }^{\prime \prime}$＂CENTERS				ACTS	professional attitude you have displayed．In these times it is indeed refreshing to deal with a company whose staff consists of people of this
1×40	Straight lead	． 99		liber．My friends and associates will most	
1×40	RIGHT ANGLE STRAIGHTIEAD	1．49	CENTERS	inly be doing business wi th you again．	
2×40 2×40	STRAIGHT LEAD RIGHT ANGLE	2.49 2.99	5／\＄1．00	Sincerely，Nicholas Chabra	

CONTACTS	SINGLE COLOR			COLOR CODED		
	1	10°	1	10°		
	.18	1.60	.30	2.75		
	.88	2.50	.48	4.40		
20	.36	3.20	.60	5.50		
25	.45	4.00	.75	-6.85		
26	.46	4.10	.78	7.15		
34	.61	5.40	1.07	9.35		
40	.72	6.40	1.20	11.00		
50	.89	7.50	1.50	13.25		

CALL FOR VOLUME QUOTES © COPYRIGHT 1986 JDR MICRODEVICES

11 Visit our retail store located at 1256 S . Bascom Ave. in San Jose, (408) 947-8881

F. JJR Microdevices

110 Knowles Drive, Los Gatos, CA 95030 Toll Free 800-538-5000 • (408) 866-6200 FAX (408) 378-8927 • Telex 171-110

© COPYRIGHT 1986 JDR MICRODEVICES

THE JDR MICRODEVICES LOGO IS A REGISTERED TRADEMARK OF JDR MICRODEVICES. JDR INSTRUMENTS AND JDR MICRODEVICES ARE TRADEMARKS OF JDR MICRODEVICES. THE JDR MICRODEVICES LOGO IS A REGISTERED TRADEMARK OF JDR MICRODEVICES, JDR INSTRUMENTS AND JDR MICRODEVICES ARE TRADE
IBM IS A TRADEMARK OF INTERNATIONAL BUSINESS MACHINES. APPLE IS A TRADEMARK OF APPLE COMPUTER.

FOR APPLE COMPUTERS

$1 / 2 \mathrm{HT}$ ，DIRECT DRIVE －SIX MONTH WARRANTY

\＄129．95
100% MECHANISM－DIRECT DRIVE －FULL ONE YEAR WARARANTY

AP－135 $\$ 129.95$
 ＊FULL HT SHUGART MECHANISM
＊DIRECT REPLACEMENT FOR APPLE －SIX MONTH WARRANTY

＊3．5＂ADD－ON DISK DRIVE －DOUBLE SIDED 800K BYTE STORAGE －HIGH RELIABILTY DRIVE
HAS AUTO－EJECT MECHANISM ＊FULL ONE YEAR WARRANTY

AD－3C \＄139．95

100% APPLE UC COMPATIBLE，
READYTO PLUG IN W SHIELDED CABLE \＆MOL －FAST，RELIABLE SLIMLINE DIRECT －SIX MONTH WARRANTY DISK DRIVE AGCESSORIES FDD CONTROLLER CARD $\$ 49.95$ ADAPTS STANDARD APPLE DRIVES 95 FOR USE WITH APPLE IIC

KB－1000

$\$ 79.95$
 ：USER DEFINED FUNCTION KEYS －NUMERIC KEYPAD WITH －CAPS LOCK
－AUTO－REPEAT

KEYBOARD－AP \＄49．95
＊REPLACEMENT FOR APPLE II
KEYBOARD

- CAPS LOCK
ONE KEY ENTRY，AUTO－REPEAT
ONE KEY ENTRY OF BASIC
OR CP／M COMMANDS

EXTENDER CARDS

IBM－PC	$\$ 45.00$
IBM－AT	$\$ 68.00$
APPLE II	$\$ 45.00$
APPLE IIe	$\$ 45.00$
MULTIBUS	$\$ 86.00$

IWTERFACE CARDS

EPROM PROGRAMMER \＄59．95

－DUPLICATE OR BURN ANY
STANDARD $27 \times x$ SERIES EPROM －EASYTO USEMENU－DRIVEN
SOFTWAREISINCLUDED －MENU SELECTION FOR 2716， －HIGH SPEED WRITE ALGORITHM －LED INDICATORS FOR ACTIVITY
－NO EXTERNAL POWER SUPPLY
NEEDED －ONE YEAR WARRANTY

16K RAMCARD $\$ 39.95$

－FULL TWO YEAR WARRANTY
EXPAND YOUR 48 K APPLE TO
－EXPAND YOUR 48K APPLE TO －USE IN PLACE OF APPLE BARE PC CARD W／IMSTRUCTIOMS $\$ 9.95$

IC TESt caro
$\$ 99.95$

300B MODEM $\$ 49.95$
FOR APPLE OR IBM

> INCLUDES ASCII PRO-EZ SOFTWARE

－FCC APPROVED
－BELLSYSTEMS 103 COMPATIBLE
INCLUDES AC ADAPTOR
－AUTO－DIAL
CABLE FOR APPLE IIc $\$ 14.95$

POWER STRIP

gel 3－WAY SWITCH BOKES
－SERIAL OR PARALLEL
－CONNECTS 3 PRINTER
－CONNECTS 3 PRINTERS TO ONE
－ALL LINES SWITCHES
－HIGHQUALITY ROTARY SWITCH MOUNTED
ON PCB GOLD CONTACTS
－STURDY METAL ENCLOSURE

SWITCH－3P CENTRONICS PARALLEL $\$ 99.95$ SWITCH－3S RS232 SERIAL $\$ 99.95$

© ${ }^{\text {and }}$ PRINTER BUFFERS

－FREES COMPUTER FOR OTHERTASKS －STAND．ALONEDESIGN：WORKS WITH ANY －AMEMODELS EEATUREPRINT PAUSE

SP120P PARALLEL \＄139．95

SP120S RS232 SERIAL $\$ 159.95$

SP110P PARALLEL $\$ 249.95$
： 64 K UPGRADABLETO $512 K$
SPOOLS OUTPUT OF OP TO 3 computers
 －LEAR RARGAPAPH DISPLAYS AMOUNT OF
－RESET FUNCTION CLEARS －RESET FUNCTION CLEARS －REFEANTENCHIN CAN COPIES OF A DOCUMENT

NASHUA DISKETTES DEALS 51／4＂SOFT SECTOR DS／DD WITH HUB RINGS
$\$ 990$ 69Сеа $59 \mathrm{C}_{\text {ea }}$
BOX OF 10 BULK ATY 50 BULK ATY 250
NASHUA DISKETTES WERE JUDGED TO HAVE THE HIGHEST POLISH
DISKETTES TESTED ACCORDING TO
COMPARING FLOPPY DISKS＂，BYTE 9／84

$\begin{aligned} & \mathrm{N} \text {-MD2D } \\ & \mathrm{N} \text {-MD2F } \\ & \mathrm{N} \text {-MD2H } \end{aligned}$	DISKETTES NASHUA 51／4＂	
	DS／DD SOFT DS／QUAD SOFT DS／HD FOR AT	$\$ 9.90$ $\$ 34.95$ $\$ 49.95$
	NASHUA 8＂	
$\begin{aligned} & \text { N-FD1 } \\ & \text { N-FD2D } \end{aligned}$	SS／DD SOFT DS／DD SOFT	\＄27．95 $\$ 34.95$
	NASHUA 3．5＂	
N－3．5SS	$3.5{ }^{\prime \prime} \mathrm{SS} / \mathrm{DD} \mathrm{FOR} \mathrm{MAC}$	\＄32．95
	VERBATIM 51／4＂	
V－MD1D	SS／DD SOFT DS／DD SOFT	$\$ 23.95$ $\$ 29.95$
V－MD110D	SSIDD 10 SECTOR HARD	\＄23．95

BUILD STEVE CIARCIA＇S INTELLIGENT EPROM PROQRAMMER

AS SEEN IN BYTE，OCT． 86
＊STAND－ALONE OR RS－232 SERIAL OPERATION
＊MENU SELECTABLE EPROM TYPES－ NO CONFIGURATION JUMPERS
＊PROGRAMS ALL 5V 27XXX EPROMS
FROM 2716 TO 27512
＊READ，COPY OR VERIFY EPROM －UPLOAD／DOWNLOAD INTEL HEX FILES
PROGRAMMER DRIVER USER MODIFIABLE

ONLY \＄199

KIT INCLUDES PCB AND ALL COMPONENTS EXCEPT CASE AND POWER SUPPLY

5114＂FLOPPY DISK DRIVES $\begin{array}{lll}\text { TEAC FD－55B } 1 / 2 \mathrm{hT} \text { DS／DD（FOR IBM）} & \$ 109.95 \\ \text { TEAC FD－55F }\end{array}$
 TANDON TM100－2 DS／DD（FOR IBM）（ $\$ 119.00$
 QUME QT－142 $\% \mathrm{HT}$ DS／DD（FOR IBM） $\$ 79.95$
$\$ 79.95$

$8^{\prime \prime}$ FLOPPY DISK DRIVES

$\begin{array}{lll}\text { FD 100－8 SS／DD ISA／801 EOUM } & \$ 119.00 \\ \text { FD 200－8 DS／DO（SA／851R EOUM } & \$ 159.00\end{array}$
DISK DRIVE ACCESSORIES
TEAC SPECIFICATION MANUAL $\$ 5.00$ TEAC MAINTENANCE MANUAL
$1 / 2 \mathrm{HT}$ MOUNTING HARDWARE
MOUNTING RAILS FOR IBM AT ＂Y＂POWER CABELE FOR $51 / /^{\prime \prime}$ FDDs

TEST EQUIPMENT FROM JDR INSTRUMENTS

DIGITAL MULTIMETER PEN DPM－1000
 AUTO RANGING，POLARITY AND DECIMAL！
 $\$ 54.95$

DISGE 3．5 DIGIT
DATA HOLD SWITCH
FREEZES READING
FAST，AUDIBLE CON
LOW BATTERY
－LOW BATTER
INDICATOR
OVERLOAD PROTEC－
TION
20MHZ DUAL TRACE OSCILLOSCOPE MODEL 2000 \＄389．00 35MHZ DUAL TRACE OSCILLOSCOPE MODEL 3500 \＄549．00
FOR MORE INFORMATION ON THE OSCILLOSCOPES，CALL US FOR FREE PRODUCT BRIEFS．

IBM COMPATIBLE INTERFACE CARDS
ALL WITH A ONE YEAR WARRANTY
MULTI I/O FLOPPY CARD
PERFECT FOR THE 640K MOTHERBOARD
$\$ 89.95$
2 DRIVE FLOPPY DISK CONTROLLER 1 RS232 SERIALPORT; OPTIONAL 2nd SERIAL PORT
GARALLEL PRINTER PORT
GLOCK/CALENDAR
SOFTWARE: CLOCKK UTILITIES,
RAMDISK, SPOOLER RAMDISK, SPOOLER OPTIONAL SERIAL PORT
MULTIFUNCTION CARD
$\$ 84.95$

K PLUS AT HALF THE PRICE CLOCK/CALENDAR O-384K RAM
SERIAL PORT PARALLEL PORT GAME PORT
SOFTWARE INCLUDED PRINTER CABLE
GAK RAM UPGRAD 59.95
$\mathbf{\$ 1 1 . 6 1}$

COLOR GRAPHICS ADAPTOR

FULLY COMPATIBLE WITH IBM COLOR CARD

1200 BAUD MODEMS

HAYES COMPATIBLE, AUTO-DIAL, AUTO-ANSWER, AUTO RE-DIAL ON BUSY. POWER-UP SELF TEST, FULL ONE YEAR WARRANTY

DEL 12003*	MODEL 1200H*	SMARTEAM
NTERNAL DESIGN	- INTERNAL DESIGN	EXTERNAL DESIGN
INCH CARD	- HALF LENGTH (5") CARD	- WITH POWER SUPPLY - LED STATUS INDICATOR
		S
	\$149 95	

CRT MONITORS FOR ALL APPLICATIONS

LUXOR
HI-RES RGB MONITOR
DIGITAL RGB-IBM COMPATIBLE 14 SCREEN 16 TRUE COLORS -25 MHz BANDDWIDTH

- RESOLUTION $>640 \times 262$. 31 mm DOT PITCH
CABLE FOR IBM PC INCLUDED

\$299.95

BUILD YOUR OUN 256K XI COMFATIBLE STSTEM
XT MOTHERBOARD \$129.85 PRO-0108 25 KM MM 130 ITIT POWER SUPPLY $\$ 18.95$ 2-8uri ceras FLIP-TOP GISE \$39.95 DKH-2000 KEYBOMRD \$58.95 y/ HERQI QUME DRIVE S70.95 FLOPPI DISK COMITNOLLER S34.95 MOUOCHINOME DDMPTOR S49.95

SAKATA COMPOSIIECOLOR TOP RATED FOR APPLE 13^{*} COMPOSITE VIDEO RESOLUTION $280 \mathrm{H} \times 300 \mathrm{~V}$ INTERNAL AUDIO AMP

CEMTER SYSTEMS MOHOCHROME
COMPATIBLE TIL INPUT
IBM COMPATIBLE TLL INPUT 12" NON GLARE SCREEN P39 GREEN PHOSPHORUS
VERY HIGH RESOLUTION 25 MHz BANDWIDTH AMBER YERSIOII \$109.95 $\$ 99.95$

4 VIDEO INTERFACES: RGB,
COMPOSITE COLOR, HI-RES COMPOSITE MONOCHROME CONNECTOR FOR RF MODULATOR - COLOR GRAPHICS MODE: 320×200
MONO GRAPHICS MODE: 640×200 - LIGHT PEN INTERFACE

MONOCHROME GRAPHICS CARD

$\$ 89.95$

ADAPTOR \& HERCUL
LOTUS COMPATIBLE
GRAPHICS MODE: 720×348 PARALLEL PRINTER INTERFACE

MONOCHROME ADAPTOR

$\$ 49.95$
ANOTHER FANTASTIC VALUE FROM JDRI

* IBM COMPATIBLE TTL OUTPUT E: THIS CARD WILL NOT RUN LOTUS GRAPHICS AND DOES NOT INCLUDE A PARALLEL PORT

FLOPPY DISK DRIVE ADAPTOR

- INTERFACES UP TO 4 STANDARD

FDDS TO IBM PC OR COMPATIBLES - INCLUDES CABLE F

- STANDARD DB37 FOR EXTERNAL DRIVES
- RUNS QUAD DENSITY DRIVES

WHEN USED WITH JFORMAT

- -

LEy Na ter	- INTERFACES UP TO 4 STANDARD FDD s TO IBM PC OR COMPATIBLES * INCLUDES CABLE FOR TWO INTERNAL DRIVES - STANDARD DB37 FOR EXTERNAL DRIVES - RUNS QUAD DENSITY DRIVES WHEN USED WITH JFORMAT

MOMOGHTOME WOMITOR ses.85

TOTAL: $\$ 811.10$

- DB25 TO

CENTRONICS
SHIELDED CABLE $\$ 9.95$

IBM COMPATIBLE KEYBOARDS
DKM-2000 \$59.95

$\because 5150$ " STYLE KEYBOARD

- LED STATUS INDICATORS FOR CAPS \& NUMBER LOCK
NUMBER LOCK
83 KEY - SAME LAYOUT AS
IBM PC/ XT KEYBOARD
IBM-5151
$\$ 79.95$

- REPLACEMENT FOR KEYTRONICS KB-5151
SEPARATE KEYPAD
CAPS LOCK $\&$
INDICATORS
IMPROVED KEYBOARD LAYOUT

POWER SUPPLY

HOW OMLY \$69.95

* FOR IBM PC-XT COMPATIBLE * 135 WATTS
. +5V @ 15A, +12V@ 4.2A
-5V @ .5A, -12V@.5A
150 WATT MODEL $\$ 79.95$

DISK DRIVES TANDON TM50-2 $\$ 79.95$

* $1 / 2$ HTDS/DD
\star IBM COMPATIBLE
* EXTREMELY QUIET!

TEAG FD-55B	DS/DD	$\$ 109.95$
TEAC FD-55F	DS/QUAD	$\$ 124.95$
TEAC FD-558	DS/HD	$\$ 154.95$
QUME QT-142	DS/DD	$\$ 79.95$
MOUNTIMA HARDWARE	$\$ 2.95$	
MT/RAILS		$\$ 4.95$

Jullice
 Mail-Order Electronics 415-592-8097

Replace the 8086 or 8088 in Your IBM-PC and Part No. Increase lts Speed by up to 40\%!

 UPD70108D-5 (5MHz) V20 Chip (Replaces the 8088).UPD70108D-8 (8MHz) V20 Chip (Replaces the 8088-2). UPD70116D-8 (8MHz) V30 Chip (Replaces the 8086 or $8086-2$)......... $\$ 114.95$ $\underset{\substack{\text { Mill } \\ \text { Par }}}{\text { Pat }}$

MICROPROCESSOR CMIPS Part No. Price	
O765AC	4.95
2661 -3.	5.95
Z80, z80A, z80B SERIES	
z880-CT	
8880 -10...	
Z880A.CTC........ 14.49	
Z880A.-DAA	
Z80A-SIO/0........ ${ }^{495}$	
z8808-pro......... 4.499	
6500/6800/68000 SER.	
${ }_{6502}^{6502}$ (ċMÖS) 2295	
65326551	
6800.	
68802	

8000 SERIES Cont

\section*{| Part |
| :--- |
| 411 |
| 412 |
| 41 |
| 41 |
| 41 |
| 8 |}

DATA ACQUISITION

ADCO80
ADCOB11
ADC0811
DAC080
DAC0808
AY-3
AY-5-

DESCFAMMBLER CHMP supply the basic sync functions for either color or mon chrome 525 line/ 60 Hz interfaced and camera video recorde applications. COLOR BURST GATE \& SYNC
ALLOW STABLE COLOR OPERATION
MM5321.
$\$ 11.95$

DT1050 - Applicationa: Taching aids, appliance

 clocks, automotive, telecommunications, language transletions, etc. The DT1050 is a standard DIGITAKER kit encode tions, etc. The DT1050 is a standard DIGITIAKKER kit encode
with 137 separate and useful words, 2 tones, and 5 differen with 137 separate and useful words, 2 tones, and 5 ditieree
silence durations. The words and tones have been assigne silence durations. The words and tones have beon asse word or words concatonated into phrases or even sentences. Th
"voice" output of the DT1050 is a highly intelilibible male voic "voice" output of the DT1050 is a highly intelig Chip, MM 5410 The DT1050 consiats of a Speech Processor Chip, MM5410
(40-pin) and two (2) Speech ROMs MM521p4SSR1 an
MM52164SRR2 (24-pin) along with a Master Word list and recommended schematic diagram on the application shee
Part No. Pric
Description DT1050 Dighalker" \ldots. . . . \$24.9:
DT1057-Expands the DT1050 vocabulary from 13 : DT1057. \$11.95

WNTERSML			
Part No.	Price	Part No.	Pria
FE0202D.	12.95	72111 PL (TTL)	6.9 !
FE0203D.	12.95	7211 MIPL (Micro)	7.4!
7106 CPL	9.95	7216CUL.	29.9
7106EV/Kit	49.95	7216DIP1.	24.94
7107 CPL	11.95	7217 NL	10.9!
7107EV/Kit.	49.95	7217AIP.	9.94
7207 AIPD.	6.95	72241 PL	294
7207AEV/Kit	8.95	7226AEV/Kit.	9
74HCOO.	25	74HC175.	
$74 \mathrm{HCO2}$		74HC221.	
74HC04.	29	74HC240.	75
74HCO8		74HC244.	75
74HC10.	29	74HC245.	8 8
74HC14.	49	74HC253.	54
$74 \mathrm{HC3O}$		74HC259.	
$74 \mathrm{HC3} 2$	29	74HC273.	75
74HC74.		74HC373.	
74HC75.	39	74HC374.	75
74HC76.		74HC393.	7
74HC85.	. 79	74HC595.	15
74HC86.		74HC688.	75
74 HCl 23.	89	74HC4040.	8s
74 HCl 25.	. 49	74HC4049.	$5 ¢$
$74 \mathrm{HC132}$		74HC4050.	. 5
$74 \mathrm{HC138}$.	49	74HC4060.	O
$74 \mathrm{HC139}$		74HC4511.	12\%
74HC154.	1.19	74HC4514.	1s
74HC163.	. 65	74HC4538.	85
74HC174.	. 69	74HC4543.	1.15
74C-cwos			
74000	29	74C174.	
74002	29	74C175.	
74004.	29	$74 \mathrm{C221}$.	
$74 \mathrm{C08}$. 35	74C240.	1.2
74 C 10.		74C244.	2
$74 \mathrm{C14}$.	. 49	74C373.	1.48
74 C 32.		74C374.	
$74 \mathrm{C74}$.	. 59	$74 \mathrm{C912}$	$9 t$
$74 \mathrm{C85}$.	1.39	$74 \mathrm{C915}$.	$3 ¢$
$74 \mathrm{CB6}$.	35	$74 \mathrm{C920}$.	9.96
$74 \mathrm{C89}$.	5.19	74.8921.	
74090.	99	740922	3.9
74 C 154.		74C923.	9
74 C 173.	1.05	74C925.	5.96
LNEAR			
DS0026CN		LF411CN.	
TLO74CN.	89	TLA97ACN	2.68
TLOB4CN.		NE54OH (C540H).	
LM307N.	. 45	NE555V.	$\stackrel{2}{5}$
LM309*		XR-L555.	
LM311N.	45	LM556N.	
LM317T.		NE558N.	
LM318N.	. 99	LM565N.	
LM319N.	. 99	LM567V.	
LM320K-5.	1.35	NE592N.	
LM3201-5.		LM741CN.	
LM323K.		LM747CN.	
LM324N.	39	MC1377P.	4.91
Lм338K	4.95	MC1398P.	
LM339N.		LM1458N.	
LM340K-5.	1.29	LM1488N.	
LM340K-12.	1.29	LM1489N.	,
LM340\%-15.	1.29	LM1496N.	
LM340T-5.		LM1871N.	
LM340T-12.	. 49	LM1872N.	
LM340T-15.		LM1896N-1	
LF347N.	1.79	ULN2003A	
LM348N.		XR2206	
LF351N.	39	XR2211.	
LF353N.	. 49	XR2243. LM2907N	
LF355N.	. 79		
LF356N	. 79	UM2917N (8 pir)	
LM358N		LM3905N	
LM360N	2.19	UM3909N	
LM361N.	1.79	M3914N	
LM380N-8.	99	LM3916N.	
LM386N	. 99	NE5532.	
LM387N.	. 99	NE5534.	
LM393N.		75477.	
LM399H.	295	76477.	

Worldwide • Since 1974
 CUALIY GOMPONENIS • GOMPEIIIVE PRIGING - PROMPT DELIVERY
 Mail Order Electronics - Worldwide
 Fineor
 ELECTRONICS

COMMODORE COMPATIBLE

 ACCESSORIES

Now Compatible With C-128
RS232 Adapter for VIC-20, C-64 and C-128
he JE232CM allows connection of standard serial RS232 ${ }^{\text {rinters, modems, etc. to your ViC-20, } \mathrm{C} \text {-64 (excluding the }}$ ersion of the 4 control lines. Complete installation and peration instructions included.
Plugs into User Port - Provides Standard RS232 signal lovels Uses 6 signals (Iransmit, Rocelve, Clear to Send, Request to IE232CM.
$\$ 39.95$
Voice Synthesizer VIC-20 \& C-64 Mug-n - Talking in Minutes JE520CM

External Power Supply
SPS-10 (For C-64). \$39.95
Parallel Printer Interface
2K Buffer, Expandable to 10 KI
VW350 (Forvic-20, C-64ac-128). \$54.95
TRS-80* COMPATIBLE
ACCESSORIES
E-X-P-A-N-D TRS-80 MEMORY
All kits come complete with documentation TRS-80 MODEL I, III
[RS-16K3 200ns (Model III) \qquad $\$ 5.49$ TRS-16K4 250ns (Model I). TRS-80 COLOR AND COLOR II rRS-64K-2. [RS-CoCo-Incl. $2-504644^{\text {New }}$ model 41464 's). ... $\$ 10.95$ TRS-80 MODEL 4, 4P, AND 4D [RS-64K-2.
डxpands Model 4 trom 16 K - 64 K 人
Kodel 4 P and 40 trom $64 \mathrm{~K}-128 \mathrm{~K}$
[RS-64K-2PAL
Expands Model 4 from 64 K to 128 K
\$14.95
TRS-80 Model 100 • NEC • Olivetti U1008K........... $\$ 19.95$ ea. or 3 for $\$ 54.95$ IRS-80 Model 100 8K Expansion
NEC8KR. $\quad \ldots \ldots .$. VEC Model PC-8201A \&K Expansion
OM108K........ $\$ 19.95$ ea. or 3 for $\$ 54.95$
Jivetti Model M10 8K Expansion
M200R. $\$ 59.95$ ea. or 2 for $\$ 109.95$ Tandy Model 200 24K Expansion

UV-EPROM ERASER

TTX-1410.
$\$ 299.95$
DISK DRIVE SALE!
MP152S Double-sided 48TPI IBM PCIXT Compatiblel. $\$ 69.95$ TM100-4 Double-sided 96TPI QUAD Drivel. \$59.95 ZUCKIEIRI3○ AIR1) Expansion Memory Half-Card for
 and Compatible Computers Expand your computer to its full capacity of 640 K
will acceot either 64 K memory chios (4164) or 256 K memory Chips (41256).
EM-100 $\begin{aligned} & \text { Expansion Memory } \\ & \text { Card walf }\end{aligned}$ with OK RAM. . . $\$ 59.95$
EM-D $\quad \begin{aligned} & \text { RAM Disk and Printer } \\ & \text { Spooler Software. . . . } \$ 39.95\end{aligned}$

ZUC:KIEIIPCA1R1)

Multifunction Board with Clock Calendar for the Tandy 1000 The Zuckerboard Multifunction Board allows you to expand the memory on your Tandy 1000 to as much as 640 K . The Multitunction Board comes complete with DMA Controller, RS232 port clock/calendar and RAM Disk Printer Spooier. The Zuckerboard Multifunction Board is made MTAN-256K Includes 256 K RAM and Manual \$179.95 MTAN-512K Includes 512 K RAM and Manual. \$209.95
Expansion Memory Half-Card and Clock/Calendar
for the Tandy 1000 - DMA Controller Chip on board!
TAN-EM256K Includes 256K RAM and Manual. \$ 99.95
TAN-EM512K Includes 512 K RAM and Manual.
\$129.95

Options for TAN-EM256K/512K

TAN-C Includes Plug-in Clock Option Chip (only).
$\$ 39.95$
TAN-D Includes RAM Disk Spooler Software (only).
$\$ 39.95$
3.5" Micro Floppy Disk Drive for
 Tandy 100 \& 200, NEC8201A, IBM PC, XT, AT and Compatible Computers Now your IBM PC or compatible can read and write the same disks as your portable!
Part No. Description
FD-103 Includes 3.5" Disk Drive, Cable
FD-103 AC Adapter, Blank Diskette and Documentation. . . . \$179.95 Software for the FD-103 Disk Drive (Software needed for operation) TS1 Tandy 100 TSDOS Disk Operating System Software. $\$ 44.95$ TS2 Tandy 200 TSDOS Disk Operating System Software. \$44.95 $\$ 44.95$ APDOS IBM PC XT AT and Compatible

LAPDO S Disk Operating System Software.

57495

FD55B Toac $5 \%^{-}$DS $1 /$-Height.
. \$109.95 JU-455 Panasonic 54" DS 14-Height . . . \$109.95 TM100-2 Tandon 54* DS Full-Height. . . . \$119.95
JMR 51/4" DISK DRIVE ENCLOSURES Complete with power supply, swich,
DDE-1FH.
$\$ 59.95$

DDE-2HH $\$ 69.95$

HDDE-1FH. $\$ 194.95$
\$20 Minimum Order - U.S. Funds Only California Residents: Add 6\%, 6 $1 / 2 \%$ or 7% Sales Tax Shipping: Add 5\% plus \$1.50 Insurance

Spec. Sheets - 50c each Prices Subject to Change

Send \$1.00 Postage for a FREE self-addressed envelope to receive a Quarterly Sales Flyer - FREE!

1987 JAMECO CATALOG

We stock the exact parts, PC board and AC adaptor for Radio Electronics February 1984 article on building your own Cable TV Descrambler.
*701 PARTS PACKAGE \$29.95Includes all the original resistors, capacitors, diodes, transistors,integrated circuits, coils, IF transformers (toko BKAN-K5552AXX).
*702 PC BOARD \$12.95Original etched \& drilled silk-screened PC board used in the article.
*704 AC ADAPTOR $\$ 12.95$Original (14 volts DC @ 285ma) ac adaptor used in the article.
$\mathbf{S} \cdot \mathbf{P} \cdot \mathbf{E} \cdot \mathbf{I} \cdot \mathbf{A} \cdot \mathbf{S}$
BOTH \#701 \& \#702 now ${ }^{\$ 39}$
ALL THREE \#701, \#702 \& \#704 now ${ }^{\$ 49}$Add $\$ 2.50$ shipping and handling - $\$ 4.50$ for Canadian ordersWe also offer quantity Discounts on 5 or more units
FREE

Reprint of Radio Electronics article (February 1984) on Building Your
Own CABLE TV DESCRAMBLER with any purchase of above.

", ELETRONG TEST CEAR

NEW 35 MHz DUAL TRACE OSCILLOSCOPE

Save 530 on the RAMSEY 2OMHZ Dual Trace Oscilloscope
Unsurpassed quality at unbeatable price, the pares to others costing pares to others costing include a component test ing circuit for resistor, apacitor, digital circuit and diode testing TV video sync frace rotator • Z axis

Was $\$ 399.95$ NOW ONLY $\$ 3.995 \begin{aligned} & \text { high quality hook on } \\ & \text { probes included }\end{aligned}$

new ramsey 1200 VOM MULTITESTER

Check transistors, diodes and LEDs with this professional quality meter. Other features include, decibel scale 20 K volt metering system • $31 / 2^{\prime \prime}$ mir measuring ranges • safety probes high impact plastic case
$\$ 2495 \quad \begin{aligned} & \text { test leads and } \\ & \text { battery include }\end{aligned}$

NEW

RAMSEY D-4100 COMPACT DIGITAL MULTITESTER

Compact sized reliability and accuracy. Tour digital multitester easily fits in your pocket, you can take it anywhere. digit LCD readout e recessed input jacks - safety probes • diode check function - 2000 hours battery life
\$2495
test leads and
battery included

MINI KITS-EASY TO ASSEMBLE, FUN TO USE BEGINNERS \& PROS WILL HAVE A GREAT TIME WITH THESE KITS

A heavy duty and accurate scope for service as well as production use. Features include sitivity • extremely bright display • delayed sitivity • extremely bright display • delayed ringering sweep \cdot. $5 \times$ ALT ification - XY or XYZ operation - HF/LF noise
reduction
3500 Dual Trace Oscilloscope
$\$ 49995 \begin{aligned} & \text { includes } 2 \text { high } \\ & \text { quality probes }\end{aligned}$
ALL OSGILLOSGOPES INCLUDE 2 PROBES
NEW 15 MHz DUAL TRACE PORTABLE OSCILLOSCOPE

MINI-100 FREQUENCY COUNTER

eatures and capabilities of counters costing twice as much compact e high sensitivity el ow current drain e very accurate - diode protected • 7 digit display
$\$ 11995$ BATTERY CHARGER NICAD BATTERIES AND AC ADAPTER INCLUDED

CT-70 7 DIGIT 525 MHz COUNTER
3 frequency rangeskthrough price. Features * 3 frequency ranges each with pre amp - dual 50 mV @ 150 MHz typical sensitivity \bullet wide frequency range - 1 ppm accuracy
$\$ 13995 \begin{gathered}\text { wired inculues } \\ \text { AC acoper }\end{gathered}$

CT-50 8 DIGIT 600 MHz

COUNTER
$\$ 18995$

CT-90 9 DIGIT 600 MHz COUNTER
The most versatile for less than $\$ 300$. Features 3 electable gate times $\cdot 9$ digits * gate indicator - display hold - 25 mV @ 150 MHz typical sen-
stivity - 10 MHz timebase for WWV . stivity • 10 MHz timebase for WWV calibratio $\$ 16995$
wired include
AC adapter
CT-90 kit 5149.95
OV-1 0.1 PpM oven timebase85
BP-4 nicad pack.
CT-125 9 DIGIT 1.2 GHz COUNTER
\$18995
wired includes
AC adapter $\quad \$ 8.95$

DM-700 DIGITAL MULTIMETER
Protosesisonal quality at a hoobbist price Fea-
tures incluce 26 idferent ranges anct 5 tuna--

DM-700 kit ...9.95
MP-1 probe set

ACGESSORIES FOR RAMSEY COUNTERS
Telescopic whip antenna-BNC plug .. \$8.95
$\begin{array}{ll}\text { High impedance probe, light loading . . . } & 16.95\end{array}$
Low pass probe, audio use
16.95

Direct probe, general purpose use 13.95
Tilt bail, for CT-70, 90, 125

What's New at AMERICAN DESIGN COMPONENTS?

'The Source" of the electro-mechanical components for the hobbyist.

We warehouse 60,000 items at American
Design Components - expensive, often hard-to-find components for sale at a fraction of their original cost! You'll find every part you need - either brand new, or removed from equipment (RFE) in excellent condition. But quantities are limited. Order from this ad, or visit our retail showroom and find exactly what you need from the thousands of items on display.

Open Mon. - Sat., 9-5
THERE'S NO RISK.
With our full 90 -day warranty. any purchase can be returned for any reason for full credit or refund.
ADAM COMPUTER KIT! (Less printer \& w/o cabinet)

Build it yourself from subassemblies. No wiring necessary (just plugs together) Hook-up diagram included. Includes: Keyboard, 1 cassette digital data drive, 2 game controllers, power supply, all memory boards, and one cassette. Is capable of
running CP / M, has built-in word process running CP / M, has built-in word processor. Item \#7410 \$99.00 (complete)

ST225 Compatible. Fits standard 5% " spacing. Shock mounted. ligh speed, low power. tem \#9217 \$179.00 New 12 VDC SPRINT ${ }^{\text {® }}$ FAN

27 CFM.

12 VDC ,

1.4 Watts

Polarity protected. Can be mounted for cooling or exhaust. Dim.: $31_{\mathrm{n}}{ }^{\prime \prime}$ sq. $\times 11_{4}$ deep Mfr - Rotron - DAYNA Item \#9218 \$12.95 New

HI-POWER COMPUTER DIGITAL VOLTMETER

 POWER SUPPLY

MPI 52S (IBM Compatible
$51 / 4 "$ FULL HEIGHT $51 / 4^{\prime \prime}$ FULL
DISK DRIVE
 Double sided/double density, full height drive. 48 T.P.I., 80 tracks. Item \#7928 \$79.95
250 CFM

SPECIAL!

$115 \mathrm{VAC} / 60 \mathrm{~Hz}$., 21 W ., 28 A 3100 RPM; 5 -blade model, aluminum housing. Can be mounted for blowing or exhaust.
Dim.: $4^{11 / 4 " s q . ~} \times 11 /$ " $^{\prime \prime}$ deep Item \#5345 \$5.95 RFE

DUAL $31 / /^{\prime \prime}$ DISK DRIVE EXPANSION MODULE
 Stacked mounting, replaces oldfashioned 5\% " disk drives, Contains: 2 Tabor TC-500 3 $\%^{\text {* }}$ disk drives. Ttl. cap, 500 K bytes unformatted. Plugs right into your controller. Item \#8827 \$169.00 - Ttl. capac. IBM unformatted w/
special software. Each unit supplied with two $3 \% / 4$ = flexible diskettes.
51/4" DISK DRIVE $1 / 2$ HT; 96 T.P.I.

Tandon TM55-4 DS/Quad Item \#1904 \$89.50

STEPPING MOTORS

for ROBOTICS

 Precisionsteppers with steppers with
increments from 1 to 7.5 degrees. Speeds up to 5,000 steps
Stall Shaft $91 / 10^{\prime \prime} L$

Fig. 2

\qquad $\begin{array}{lllllll}5431 & 1 & 5 & 17 & \text { PM N.A. Phillips } \quad 1 & \$ 9.95 \text { ea. }\end{array}$ A82310-M2 $\quad 2 / \$ 14.95$ $\begin{array}{lllll}5272 & 1.8 & 1.8 & 150 & \text { PM Superior Electric } \quad 2\end{array} \$ 34.50$ ea. $4 \emptyset$ M091-FD-6009 $\quad 2 / \$ 59.50$

ADAM PRINTER

Complete, less top cover plate. Friction feed. Takes standard paper $81 / 2^{*} \times 11^{\prime \prime}$ (Customer returns; tested - operational.) Item \#8839 $\$ 69.50$

ADAM ACCESSORIES

Data Drive D.D. Power Supply

\#6641 \$9.95 D.D. Power Supply \#6642 \$14.95 ASCII Keyboard \#6643 \$19.95 Asst. Cassettes \#7786 \$19.95
COMMODORE SPECIALS! 66-KEY MECHANICAL KEYBOARD
 Grey keys with black letters.
Connecting cable included Dim.: $15 \%^{-1} \mathrm{~L} \times 5^{-} \mathrm{H}$ Item \#9394

PLUG-IN

POWER
SUPPLY
Input: $115 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$. (\%) Input: $115 \mathrm{VAC}, 50 / 601 \mathrm{~A}$
Output: $9.5 \mathrm{~V} @ 1 \mathrm{~A}$
Dim. : $2^{3}{ }^{* W}$ W $\times 3^{1 / 2} \mathrm{H}$

PUMPS-COMPRESSORS-BLOWERS - MOTORS - POTENTIOMETERS-COUNTERS TIMERS - RELAYS - VOLTAGE REGULATORS -POWER SUPPLIES
ADAM CASSETTES

Consists of Smart Basic, Buck Rogers, and blank cassettes (all Rogers, and blank cas Item \#7786 - Bakers Dozen 13 for \$19.95

48-KEY KEYBOARD

Replace the membrane keyboard Replace the membrane keyboard
on your Timex/Sinclair Z-81/1000 with this brand new "big computer" keyboard from Texas Instruments. Simple to install complete instructions and sche matic included

G IR F r tr p

GEL-CELL BATTERIES (Rechargeable
For use with model cars, trains, boats,

6V@9.5 AH

Dim.: $5 \frac{1 / 2}{}{ }^{\prime \prime} \mathrm{H} \times 41 /{ }^{\prime \prime} \mathrm{W} \times 2$ s/m"deep Mfr - Elpower \#695 Item \#7039 \$14.95 New

$6 \mathrm{~V} @ .9 \mathrm{AH}$

Dim. : $2^{*} \mathrm{~W} \times 2^{*} \mathrm{H} \times 1^{3}$ Mfr - Globe GC610

Rechargeable NICAD BATTERY BACKUPS

AMERICAN DESIGN COMPONENTS, 62 JOSEPH STREET, MOONACHIE, N.J. 07074

YES! Please send me the following items:

\square My check or money order is enclosed
\square Charge my credit card.
\square Visa \square Master Card \square Amex мілімим Card No.
Exp. Date
Signature
Telephone: Area Code Number
Name
Address
City
State
All inquiries and free catalog requests call 201-939-2710.
For all phone orders, call TOLL-FREE 800-524-0809. In New Jersey, 201-939-2710.

TENMAT Combination Function Generator and Frequency Counter
mix digit display a Output range： .2 Hz 2 MHz ：seven ranges a Counter range： 1 Hz $10 \mathrm{MHz}=5-15 \mathrm{~V}$ TTL and CMOS output －Wave forms：sine，triangle，square，pulse， and ramp．For detailed specifications call for a complete Tenma catalog．

\＃72－380

s21990

TENMAD 120MHz Frequency

Counter

－Eight digit LED display－Measurement range： $.1 \mathrm{~Hz}-120 \mathrm{MHz}=$ High input sensitivity of 20 mV RMS．For detailed specifications call for a complete Tenma catalog．

\＃72－375

s18995

TENMAI 30A Power Supply －Output voltage：1－15VDC $=$ Lighted cross needle meter：Displays voltage，current and power simultaneously $=$ Output current：30A，24A continuous \quad Fan cooled
\＃72－035
\＄22780

TENMAL 20 MHz Dual Trace Oscilloscope －Two high quality 10：1 probes included．For detailed specifications call for a complete Tenma catalog．

TENMA Digital

LCR Meter
－Measures inductance， capacitance and
resistance $\quad \mathrm{L}=1 \mu \mathrm{H}-200 \mathrm{H}$ ，
$\mathrm{C}=.1 \mathrm{pF}-200 \mu \mathrm{~F}, \mathrm{R}=$
．010hm－20Mohm
－Carrying case included．
For detailed specifications call for a complete Tenma catalog．

TENMA

Clamp－On／DMM
－Measures AC current via clamp $:$ High quality built－ in DMM measures DC volts，$A C$ volts，resistance， AC current．Peak hold －Data hold ■ Audible continuity buzzer a Test leads and carrying case included．For detailed specifications call for a complete Tenma catalog \＃72－395 \＄8490

TENMA $41 / 2^{\prime \prime}$ Digit Multimeter

－True RMS AC voltage and current functions \approx Built－in frequency counter， 20 KHz and 200 KHz range a Data hold feature－Measures AC and DC voltage／current，resistance and frequency $:$ Carrying case included．

\＃72－430
 \＄15980

858 E．CONGRESS PARK DR．•CENTERVILLE．OH 45459 （513）434－0031

MCM ELECTRONICS
A PREMIER Company
SOURCE NO．RE－27

12380 SARATOGA-SUNNYVALE RD. SARATOGA, CA 95070

DYNAMIC RAMS

4164-150NS $\$.99$ 41256-150NS INTEGRATED CIRCUITS

| 65C02 | $\$ 8.95$ | MC10231P | $\$.39$ |
| :--- | ---: | :--- | :--- | ---: |
| ADC0816CCN | 6.95 | LF347 | .95 |
| FD1797B-02 | 7.95 | LM350K | 2.00 |
| WD2143M-02 | 4.95 | MSM5832 | 1.95 |
| PAL20L10NC | 2.95 | | |

EPROMS	
2716-450NS	$\$ 2.95$
2732A-450NS	2.25
2764-450NS	3.00
2764-250NS	3.75
27256-300NS	6.75

DRIVES

Teac 55B	$\$ 85.00$
Fujitsu M2551A	79.00
MIT 4853 Quad/DS 96 TPI	69.95
Seagate 20MB $1 / 2 \mathrm{Ht}$.	299.00
Quantum 40MB Full Ht.	795.00
Hard Disk Controller (Omti 5510)	109.00

PC/AT COMPATIBLE SYSTEM BOARD $\$ 749.00$

1 Megabyte Installed
PC/XT COMPATIBLE SYSTEM BOARD $\$ 129.00$
Turbo/640KB w/o Bios \& Ram
PC/XT SYSTEM KIT $\$ 795.00$
Turbo/640KB
HARD DISK DRIVE $\$ 895.00$
PCAT Compatible
70 MB - 25 msec Access

CIRCLE 97 ON FREE INFORMATION CARD

ADVERTISING INDEX
RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

2001 SCOMING INMAY

BP Video Processor gives you precision picture control.

Preserve your memories on videotape

Increase the life of your VCR head and tape with BP VHS or Beta Tape Rewinders.

Don't risk worn-down heaus and tape damage by rewinding on your VCR. BP Tape Rewinders feature counter, soft button action, controlled speed and automatic shutoff.

You'll get 5 units in one! The BP Video Processor functions as a Stabilizer to end video guard distortion.... as an Enhancer to provide peak sharpness...as an RF Converter to feed signals from video cameras, computer or VCR in your TV.... as a Video Fader for professional fade-in and fadeout effects....and as a Dual Output Distribution Amplifier to send TV signals to other sets.
 Video Color Processor.

You'll get clear, crisp, undistorted sound from this high quality, directional FM antenna. Mounts instantly indoors, comes complete with coaxial cable and transformer.

Model FM-9700
Cet the most our
FM Antenna fine-tunes
Add Stereo to your Video

The mini speaker with maxi sound. 3 " long throw woofer; 1 " soft dome tweeter; 2 " extended midrange speaker.

Max power 50 watts.
 s2995

This versatile color processor corrects off
This versatile color processor corr
color tape, eliminates single color dominance and restores sharpness in detail. Plus, it stabilizes copy guarded tapes and filters audio noise.

$\$ 4095$

Send for FREE catalog of hundreds of items.
Money orders, checks accepted. C.O.D.'s require 25\% deposit.

Service \& Shipping Charge Schedule Continental U.S.A.	
FOR ORDERS	ADD
\$25-\$100	\$4.50
\$101-\$250	\$6.00
\$251-500	\$8.00
\$501-750	\$10.50
\$751-1,000	\$12.50
\$1,001-1500	\$16.50
\$1,501-2000	\$20.00
\$2,001 and up	\$25.00

[^0]: As a service to readers, RADIO-ELECTRONICS publishes available plans or information relating to newsworthy products, As a service to readers, RADIO-ELECTRONICS publishes available plans or information relating to newsworthy products,
 techniques and scientific and technological developments. Because of possible variances in the quality and condition of techniques and scientific and usechnological developments. Because of possible variances in the quality and condition of
 materials and workmanship used by readers, RADIO-ELECTRONICS disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

 Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents, RADIO-ELECTRONICS disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

[^1]: ComputerDigest is published monthly as an insert in Radio-Electronics magazine by Gernsback Publications, Inc. 500-B Bi-County Blvd., Farmingdale, N.Y. 11735. Second-Class Postage Paid at New York, N.Y. and additional mailing offices. Copyright © 1986 Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.

